Rust iterate over borrowed mutable reference - rust

I wanted a function to control and change a vector in rust. Here is a simplified version:
fn foo(vec: &mut Vec<i32>) {
for (i, element) in vec.iter().enumerate() {
// Some checks here
vec[(*element) as usize] = i as i32;
}
}
fn main() {
let mut bar: Vec<i32> = vec![1, 0, 2];
foo(&mut bar);
}
This code does not compile because there is both an immutable and a mutable borrow of vec in foo. I tried getting around this by copying vec to a separate copy, which didn't work and also wouldn't have been very pretty. What is the correct way to do this?

If you want to mutate the Vec, the correct way is to iterate over it mutably instead of immutably:
fn foo(vec: &mut Vec<i32>) {
// note the `iter_mut` here:
for element in vec.iter_mut() {
// Some checks here
// element now has type `&mut i32` and we can mutate it directly.
*element *= 2;
}
}
fn main() {
let mut bar: Vec<i32> = vec![1, 2, 3];
foo(&mut bar);
println!("{:?}", bar); // [2, 4, 6]
}

You can avoid borrowing the whole Vec by using index access like this:
fn foo(vec: &mut Vec<i32>) {
for index in 0..vec.len() {
let element = vec[index];
if element <= 0 {
continue;
}
vec[index] = index as i32;
}
}
fn main() {
let mut bar: Vec<i32> = vec![1, 0, 2];
foo(&mut bar);
println!("{:?}", bar)
}

Related

How can concatenated &[u8] slices implement the Read trait without additional copying?

The Read trait is implemented for &[u8]. How can I get a Read trait over several concatenated u8 slices without actually doing any concatenation first?
If I concatenate first, there will be two copies -- multiple arrays into a single array followed by copying from single array to destination via the Read trait. I would like to avoid the first copying.
I want a Read trait over &[&[u8]] that treats multiple slices as a single continuous slice.
fn foo<R: std::io::Read + Send>(data: R) {
// ...
}
let a: &[u8] = &[1, 2, 3, 4, 5];
let b: &[u8] = &[1, 2];
let c: &[&[u8]] = &[a, b];
foo(c); // <- this won't compile because `c` is not a slice of bytes.
You could use the multi_reader crate, which can concatenate any number of values that implement Read:
let a: &[u8] = &[1, 2, 3, 4, 5];
let b: &[u8] = &[1, 2];
let c: &[&[u8]] = &[a, b];
foo(multi_reader::MultiReader::new(c.iter().copied()));
If you don't want to depend on an external crate, you can wrap the slices in a struct of your own and implement Read for it:
struct MultiRead<'a> {
sources: &'a [&'a [u8]],
pos_in_current: usize,
}
impl<'a> MultiRead<'a> {
fn new(sources: &'a [&'a [u8]]) -> MultiRead<'a> {
MultiRead {
sources,
pos_in_current: 0,
}
}
}
impl Read for MultiRead<'_> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
let current = loop {
if self.sources.is_empty() {
return Ok(0); // EOF
}
let current = self.sources[0];
if self.pos_in_current < current.len() {
break current;
}
self.pos_in_current = 0;
self.sources = &self.sources[1..];
};
let read_size = buf.len().min(current.len() - self.pos_in_current);
buf[..read_size].copy_from_slice(&current[self.pos_in_current..][..read_size]);
self.pos_in_current += read_size;
Ok(read_size)
}
}
Playground
Create a wrapper type around the slices and implement Read for it. Compared to user4815162342's answer, I delegate down to the implementation of Read for slices:
use std::{io::Read, mem};
struct Wrapper<'a, 'b>(&'a mut [&'b [u8]]);
impl<'a, 'b> Read for Wrapper<'a, 'b> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
let slices = mem::take(&mut self.0);
match slices {
[head, ..] => {
let n_bytes = head.read(buf)?;
if head.is_empty() {
// Advance the child slice
self.0 = &mut slices[1..];
} else {
// More to read, put back all the child slices
self.0 = slices;
}
Ok(n_bytes)
}
_ => Ok(0),
}
}
}
fn main() {
let parts: &mut [&[u8]] = &mut [b"hello ", b"world"];
let mut w = Wrapper(parts);
let mut buf = Vec::new();
w.read_to_end(&mut buf).unwrap();
assert_eq!(b"hello world", &*buf);
}
A more efficient implementation would implement further methods from Read, such as read_to_end or read_vectored.
See also:
How do I implement a trait I don't own for a type I don't own?

What is a reborrow and how does it influence the code the compiler generates?

Part of the assert_eq macro code is:
($left:expr, $right:expr, $($arg:tt)+) => ({
match (&($left), &($right)) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
// The reborrows below are intentional. Without them, the stack slot for the
// borrow is initialized even before the values are compared, leading to a
// noticeable slow down.
$crate::panic!(r#"assertion failed: `(left == right)`
left: `{:?}`,
right: `{:?}`: {}"#, &*left_val, &*right_val,
$crate::format_args!($($arg)+))
}
}
}
});
The comment says that the reborrow is intentional and that it would somehow influence how stack is used.
What is a reborrow and how does it influence the code the compiler generates?
I am not sure how it affects compilation but a reborrow is when you dereference something and then borrow it straight after.
For example:
fn main() {
let mut vec: Vec<u8> = vec![1, 2, 3];
let mut_ref: &mut Vec<u8> = &mut vec;
let reborrow: &Vec<u8> = &*mut_ref;
}
It can be used to:
get an immutable reference from a mutable reference (code above)
get a reference with a shorter lifetime
get a reference to something in a smart pointer
get a reference from a pointer
and probably other things too.. (I am fairly new to Rust 😃)
Example use for shortening lifetime (very contrived but this is oversimplified):
fn main() {
let mut outer_vec = vec![1, 2, 3];
let outer_ref = &mut outer_vec;
{
// shorten lifetime of outer_ref
// not doing this causes an error
let mut outer_ref = &mut *outer_ref; // mutable reborrow
let mut inner_vec = vec![1, 2, 3];
let inner_ref = &mut inner_vec;
// imagine a real condition
if true {
outer_ref = inner_ref;
}
// use outer_ref which could point to the outer_vec or inner_vec
println!("{:?}", outer_ref);
}
println!("{:?}", outer_ref);
}
Getting a reference to something behind a smart pointer (Box in this case):
fn main() {
let vec = vec![1, 2, 3];
let boxed = Box::new(vec);
let reborrow: &Vec<u8> = &*boxed;
println!("{:?}", reborrow);
}
Reference from pointer:
fn main() {
let num: u8 = 10;
let pointer: *const u8 = &num as *const u8;
unsafe {
let ref_from_ptr: &u8 = &*pointer;
}
}
Not sure if all of these are strictly considered a "reborrow" by the way.

Rust same mutable reference in multiple vectors

I am trying to store an object into 2 different reference vectors, and if I modify the object from first vector ref, it should be visible from the second vector.
I still haven't understood well borrowing so that's what I'm trying to acheive :
use std::fmt::Display;
use std::fmt::Formatter;
use std::fmt::Result;
use std::vec::Vec;
struct A {
x: u32,
}
impl Display for A {
fn fmt(&self, f: &mut Formatter) -> Result {
write!(f, "{}", self.x)
}
}
fn main() {
let mut a = A{x: 1};
let mut v1: Vec<&mut A> = Vec::new();
let mut v2: Vec<&mut A> = Vec::new();
v1.push(&mut a);
v2.push(&mut a);
let f: &mut A = v1[0];
f.x = 3;
for v in &v1 {
println!("Value: {}", v);
}
for v in &v2 {
println!("Value: {}", v);
}
}
Of course this doesn't compile. What should I do to be able to store same object in different collection like objects ? (I don't see any concurency issue or borrowing here).

Passing borrowing reference as not borrowing

fn count_occur(v: &Vec<i32>, val: i32) -> usize {
0
}
fn main() -> () {
let v1 = vec![1, 2, 3, 4, 5, 6];
for &item in &v1 {
let v2 = count_occur(&v1, item);
println!("{}", v2);
}
}
item is a not mutable borrowing reference. Why does the compiler accept that code? After all, count_occur accepts not borrowing reference to i32?

Efficiently insert or replace multiple elements in the middle or at the beginning of a Vec?

Is there any straightforward way to insert or replace multiple elements from &[T] and/or Vec<T> in the middle or at the beginning of a Vec in linear time?
I could only find std::vec::Vec::insert, but that's only for inserting a single element in O(n) time, so I obviously cannot call that in a loop.
I could do a split_off at that index, extend the new elements into the left half of the split, and then extend the second half into the first, but is there a better way?
As of Rust 1.21.0, Vec::splice is available and allows inserting at any point, including fully prepending:
let mut vec = vec![1, 5];
let slice = &[2, 3, 4];
vec.splice(1..1, slice.iter().cloned());
println!("{:?}", vec); // [1, 2, 3, 4, 5]
The docs state:
Note 4: This is optimal if:
The tail (elements in the vector after range) is empty
or replace_with yields fewer elements than range’s length
or the lower bound of its size_hint() is exact.
In this case, the lower bound of the slice's iterator should be exact, so it should perform one memory move.
splice is a bit more powerful in that it allows you to remove a range of values (the first argument), insert new values (the second argument), and optionally get the old values (the result of the call).
Replacing a set of items
let mut vec = vec![0, 1, 5];
let slice = &[2, 3, 4];
vec.splice(..2, slice.iter().cloned());
println!("{:?}", vec); // [2, 3, 4, 5]
Getting the previous values
let mut vec = vec![0, 1, 2, 3, 4];
let slice = &[9, 8, 7];
let old: Vec<_> = vec.splice(3.., slice.iter().cloned()).collect();
println!("{:?}", vec); // [0, 1, 2, 9, 8, 7]
println!("{:?}", old); // [3, 4]
Okay, there is no appropriate method in Vec interface (as I can see). But we can always implement the same thing ourselves.
memmove
When T is Copy, probably the most obvious way is to move the memory, like this:
fn push_all_at<T>(v: &mut Vec<T>, offset: usize, s: &[T]) where T: Copy {
match (v.len(), s.len()) {
(_, 0) => (),
(current_len, _) => {
v.reserve_exact(s.len());
unsafe {
v.set_len(current_len + s.len());
let to_move = current_len - offset;
let src = v.as_mut_ptr().offset(offset as isize);
if to_move > 0 {
let dst = src.offset(s.len() as isize);
std::ptr::copy_memory(dst, src, to_move);
}
std::ptr::copy_nonoverlapping_memory(src, s.as_ptr(), s.len());
}
},
}
}
shuffle
If T is not copy, but it implements Clone, we can append given slice to the end of the Vec, and move it to the required position using swaps in linear time:
fn push_all_at<T>(v: &mut Vec<T>, mut offset: usize, s: &[T]) where T: Clone + Default {
match (v.len(), s.len()) {
(_, 0) => (),
(0, _) => { v.push_all(s); },
(_, _) => {
assert!(offset <= v.len());
let pad = s.len() - ((v.len() - offset) % s.len());
v.extend(repeat(Default::default()).take(pad));
v.push_all(s);
let total = v.len();
while total - offset >= s.len() {
for i in 0 .. s.len() { v.swap(offset + i, total - s.len() + i); }
offset += s.len();
}
v.truncate(total - pad);
},
}
}
iterators concat
Maybe the best choice will be to not modify Vec at all. For example, if you are going to access the result via iterator, we can just build iterators chain from our chunks:
let v: &[usize] = &[0, 1, 2];
let s: &[usize] = &[3, 4, 5, 6];
let offset = 2;
let chain = v.iter().take(offset).chain(s.iter()).chain(v.iter().skip(offset));
let result: Vec<_> = chain.collect();
println!("Result: {:?}", result);
I was trying to prepend to a vector in rust and found this closed question that was linked here, (despite this question being both prepend and insert AND efficiency. I think my answer would be better as an answer for that other, more precises question because I can't attest to the efficiency), but the following code helped me prepend, (and the opposite.) [I'm sure that the other two answers are more efficient, but the way that I learn, I like having answers that can be cut-n-pasted with examples that demonstrate an application of the answer.]
pub trait Unshift<T> { fn unshift(&mut self, s: &[T]) -> (); }
pub trait UnshiftVec<T> { fn unshift_vec(&mut self, s: Vec<T>) -> (); }
pub trait UnshiftMemoryHog<T> { fn unshift_memory_hog(&mut self, s: Vec<T>) -> (); }
pub trait Shift<T> { fn shift(&mut self) -> (); }
pub trait ShiftN<T> { fn shift_n(&mut self, s: usize) -> (); }
impl<T: std::clone::Clone> ShiftN<T> for Vec<T> {
fn shift_n(&mut self, s: usize) -> ()
// where
// T: std::clone::Clone,
{
self.drain(0..s);
}
}
impl<T: std::clone::Clone> Shift<T> for Vec<T> {
fn shift(&mut self) -> ()
// where
// T: std::clone::Clone,
{
self.drain(0..1);
}
}
impl<T: std::clone::Clone> Unshift<T> for Vec<T> {
fn unshift(&mut self, s: &[T]) -> ()
// where
// T: std::clone::Clone,
{
self.splice(0..0, s.to_vec());
}
}
impl<T: std::clone::Clone> UnshiftVec<T> for Vec<T> {
fn unshift_vec(&mut self, s: Vec<T>) -> ()
where
T: std::clone::Clone,
{
self.splice(0..0, s);
}
}
impl<T: std::clone::Clone> UnshiftMemoryHog<T> for Vec<T> {
fn unshift_memory_hog(&mut self, s: Vec<T>) -> ()
where
T: std::clone::Clone,
{
let mut tmp: Vec<_> = s.to_owned();
//let mut tmp: Vec<_> = s.clone(); // this also works for some data types
/*
let local_s: Vec<_> = self.clone(); // explicit clone()
tmp.extend(local_s); // to vec is possible
*/
tmp.extend(self.clone());
*self = tmp;
//*self = (*tmp).to_vec(); // Just because it compiles, doesn't make it right.
}
}
// this works for: v = unshift(v, &vec![8]);
// (If you don't want to impl Unshift for Vec<T>)
#[allow(dead_code)]
fn unshift_fn<T>(v: Vec<T>, s: &[T]) -> Vec<T>
where
T: Clone,
{
// create a mutable vec and fill it
// with a clone of the array that we want
// at the start of the vec.
let mut tmp: Vec<_> = s.to_owned();
// then we add the existing vector to the end
// of the temporary vector.
tmp.extend(v);
// return the tmp vec that is identitcal
// to unshift-ing the original vec.
tmp
}
/*
N.B. It is sometimes (often?) more memory efficient to reverse
the vector and use push/pop, rather than splice/drain;
Especially if you create your vectors in "stack order" to begin with.
*/
fn main() {
let mut v: Vec<usize> = vec![1, 2, 3];
println!("Before push:\t {:?}", v);
v.push(0);
println!("After push:\t {:?}", v);
v.pop();
println!("popped:\t\t {:?}", v);
v.drain(0..1);
println!("drain(0..1)\t {:?}", v);
/*
// We could use a function
let c = v.clone();
v = unshift_fn(c, &vec![0]);
*/
v.splice(0..0, vec![0]);
println!("splice(0..0, vec![0]) {:?}", v);
v.shift_n(1);
println!("shift\t\t {:?}", v);
v.unshift_memory_hog(vec![8, 16, 31, 1]);
println!("MEMORY guzzler unshift {:?}", v);
//v.drain(0..3);
v.drain(0..=2);
println!("back to the start: {:?}", v);
v.unshift_vec(vec![0]);
println!("zerothed with unshift: {:?}", v);
let mut w = vec![4, 5, 6];
/*
let prepend_this = &[1, 2, 3];
w.unshift_vec(prepend_this.to_vec());
*/
w.unshift(&[1, 2, 3]);
assert_eq!(&w, &[1, 2, 3, 4, 5, 6]);
println!("{:?} == {:?}", &w, &[1, 2, 3, 4, 5, 6]);
}

Resources