I am in the middle of modifying my copy of training.py from Deep Learning with PyTorch, by Eli Stevens, Luca Antiga, and Thomas Viehmann. I want to compute the standardized RMSE of the validation set after the last epoch of training has finished.
I know how to do this, in general. However what is the best way to do this in the indicated project?
Related
I have a multilabel classification problem, which I am trying to solve with CNNs in Pytorch. I have 80,000 training examples and 7900 classes; every example can belong to multiple classes at the same time, mean number of classes per example is 130.
The problem is that my dataset is very imbalance. For some classes, I have only ~900 examples, which is around 1%. For “overrepresented” classes I have ~12000 examples (15%). When I train the model I use BCEWithLogitsLoss from pytorch with a positive weights parameter. I calculate the weights the same way as described in the documentation: the number of negative examples divided by the number of positives.
As a result, my model overestimates almost every class… Mor minor and major classes I get almost twice as many predictions as true labels. And my AUPRC is just 0.18. Even though it’s much better than no weighting at all, since in this case the model predicts everything as zero.
So my question is, how do I improve the performance? Is there anything else I can do? I tried different batch sampling techniques (to oversample minority class), but they don’t seem to work.
I would suggest either one of these strategies
Focal Loss
A very interesting approach for dealing with un-balanced training data through tweaking of the loss function was introduced in
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He and Piotr Dollar Focal Loss for Dense Object Detection (ICCV 2017).
They propose to modify the binary cross entropy loss in a way that decrease the loss and gradient of easily classified examples while "focusing the effort" on examples where the model makes gross errors.
Hard Negative Mining
Another popular approach is to do "hard negative mining"; that is, propagate gradients only for part of the training examples - the "hard" ones.
see, e.g.:
Abhinav Shrivastava, Abhinav Gupta and Ross Girshick Training Region-based Object Detectors with Online Hard Example Mining (CVPR 2016)
#Shai has provided two strategies developed in the deep learning era. I would like to provide you some additional traditional machine learning options: over-sampling and under-sampling.
The main idea of them is to produce a more balanced dataset by sampling before starting your training. Note that you probably will face some problems such as losing the data diversity (under-sampling) and overfitting the training data (over-sampling), but it might be a good start point.
See the wiki link for more information.
I've been working with the MLPClassifier for a while and I think I had a wrong interpretation of what the function is doing for the whole time and I think I got it right now, but I am not sure about that. So I will summarize my understanding and it would be great if you could add your thoughts on the right understanding.
So with the MLPClassifier we are building a neural network based on a training dataset. Setting early_stopping = True it is possible to use a validation dataset within the training process in order to check whether the network is working on a new set as well. If early_stopping = False, no validation within he process is done. After one has finished building, we can use the fitted model in order to predict on a third dataset if we wish to.
What I was thiking before is, that doing the whole training process a validation dataset is being taken aside anways with validating after every epoch.
I'm not sure if my question is understandable, but it would be great if you could help me to clear my thoughts.
The sklearn.neural_network.MLPClassifier uses (a variant of) Stochastic Gradient Descent (SGD) by default. Your question could be framed more generally as how SGD is used to optimize the parameter values in a supervised learning context. There is nothing specific to Multi-layer Perceptrons (MLP) here.
So with the MLPClassifier we are building a neural network based on a training dataset. Setting early_stopping = True it is possible to use a validation dataset within the training process
Correct, although it should be noted that this validation set is taken away from the original training set.
in order to check whether the network is working on a new set as well.
Not quite. The point of early stopping is to track the validation score during training and stop training as soon as the validation score stops improving significantly.
If early_stopping = False, no validation within [t]he process is done. After one has finished building, we can use the fitted model in order to predict on a third dataset if we wish to.
Correct.
What I was thiking before is, that doing the whole training process a validation dataset is being taken aside anways with validating after every epoch.
As you probably know by now, this is not so. The division of the learning process into epochs is somewhat arbitrary and has nothing to do with validation.
I have a multilabel classification problem, which I am trying to solve with CNNs in Pytorch. I have 80,000 training examples and 7900 classes; every example can belong to multiple classes at the same time, mean number of classes per example is 130.
The problem is that my dataset is very imbalance. For some classes, I have only ~900 examples, which is around 1%. For “overrepresented” classes I have ~12000 examples (15%). When I train the model I use BCEWithLogitsLoss from pytorch with a positive weights parameter. I calculate the weights the same way as described in the documentation: the number of negative examples divided by the number of positives.
As a result, my model overestimates almost every class… Mor minor and major classes I get almost twice as many predictions as true labels. And my AUPRC is just 0.18. Even though it’s much better than no weighting at all, since in this case the model predicts everything as zero.
So my question is, how do I improve the performance? Is there anything else I can do? I tried different batch sampling techniques (to oversample minority class), but they don’t seem to work.
I would suggest either one of these strategies
Focal Loss
A very interesting approach for dealing with un-balanced training data through tweaking of the loss function was introduced in
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He and Piotr Dollar Focal Loss for Dense Object Detection (ICCV 2017).
They propose to modify the binary cross entropy loss in a way that decrease the loss and gradient of easily classified examples while "focusing the effort" on examples where the model makes gross errors.
Hard Negative Mining
Another popular approach is to do "hard negative mining"; that is, propagate gradients only for part of the training examples - the "hard" ones.
see, e.g.:
Abhinav Shrivastava, Abhinav Gupta and Ross Girshick Training Region-based Object Detectors with Online Hard Example Mining (CVPR 2016)
#Shai has provided two strategies developed in the deep learning era. I would like to provide you some additional traditional machine learning options: over-sampling and under-sampling.
The main idea of them is to produce a more balanced dataset by sampling before starting your training. Note that you probably will face some problems such as losing the data diversity (under-sampling) and overfitting the training data (over-sampling), but it might be a good start point.
See the wiki link for more information.
I have a machine learning model built that tries to predict weather data, and in this case I am doing a prediction on whether or not it will rain tomorrow (a binary prediction of Yes/No).
In the dataset there is about 50 input variables, and I have 65,000 entries in the dataset.
I am currently running a RNN with a single hidden layer, with 35 nodes in the hidden layer. I am using PyTorch's NLLLoss as my loss function, and Adaboost for the optimization function. I've tried many different learning rates, and 0.01 seems to be working fairly well.
After running for 150 epochs, I notice that I start to converge around .80 accuracy for my test data. However, I would wish for this to be even higher. However, it seems like the model is stuck oscillating around some sort of saddle or local minimum. (A graph of this is below)
What are the most effective ways to get out of this "valley" that the model seems to be stuck in?
Not sure why exactly you are using only one hidden layer and what is the shape of your history data but here are the things you can try:
Try more than one hidden layer
Experiment with LSTM and GRU layer and combination of these layers together with RNN.
Shape of your data i.e. the history you look at to predict the weather.
Make sure your features are scaled properly since you have about 50 input variables.
Your question is little ambiguous as you mentioned RNN with a single hidden layer. Also without knowing the entire neural network architecture, it is tough to say how can you bring in improvements. So, I would like to add a few points.
You mentioned that you are using "Adaboost" as the optimization function but PyTorch doesn't have any such optimizer. Did you try using SGD or Adam optimizers which are very useful?
Do you have any regularization term in the loss function? Are you familiar with dropout? Did you check the training performance? Does your model overfit?
Do you have a baseline model/algorithm so that you can compare whether 80% accuracy is good or not?
150 epochs just for a binary classification task looks too much. Why don't you start from an off-the-shelf classifier model? You can find several examples of regression, classification in this tutorial.
I am using Keras now to train my LSTM model for a time series problem. My activation function is linear and the optimizer is Rmsprop.
However, i observe the tendency that while the training loss is decreasing slowly overtime, and fluctuate around a small value, the validation loss jumps up and down with a large variance.
Therefore, I come up with two questions:
1. Does the validation loss affect the training process? Will the algorithm look at the validation loss and slow down the learning rate in case it fluctuates alot?
2. How can i make the model more stable so that it will return a more stable values of validation loss?
Thanks
Does the validation loss affect the training process?
No. The validation loss is just a small sample of data that is excluded from the training process. It is run through the network at the end of an epoch, to test how well training is going, so that you can check if the model is over fitting (i.e. training loss much < validation loss).
Fluctuation in validation loss
This is bit tougher to answer without the network or data. It could just mean that your model isn't converging well to unseen data, meaning that its not seeing a enough similar trends from training data to validation data, and each time the weights are adjusted to better suit the training data, the model becomes less accurate for the validation set. You could possibly turn down the learning rate, but if your training loss is decreasing slowly, the learning rate is probably fine. I think in this situation, you have to ask yourself a few questions. Do I have enough data? Does a true time series trend exist in my data? Have I normalized my data correctly? Is my network to large for the data I have?
I had this issue - while training loss was decreasing, the validation loss was not decreasing. I checked and found while I was using LSTM:
I simplified the model - instead of 20 layers, I opted for 8 layers.
Instead of scaling within range (-1,1), I choose (0,1), this right there reduced my validation loss by magnitude of one order
I reduced the batch size from 500 to 50 (just trial and error)
I added more features, which I thought intuitively would add some new intelligent information to the X->y pair
Possible reasons:
Your validation set is very small compare to your trainning set which usually happens. A little change of weights makes validation loss fluctuate much more than trainning loss. This may not neccessary mean that your model is overfiting. As long as the overall trendency of validation loss keeps decreasing.
May be your train and validation data are from different sources, they may have different distributions. This may happen when your data is time series, and you split your train/validation data by a specific timestamp.
Does the validation loss affect the training process?
No, validation(forward-pass-once) and training(forward-and-backward) are different processes. Hence a single forword pass does not change how would you train next.
Will the algorithm look at the validation loss and slow down the learning rate in case it fluctuates alot?
No, But I guess you can implement your own method to do so. However, one thing should be noted, the model is trying to learn the best solution to your cost function which are fed by trainning data only, so changing this learning rate by observing validation loss doesnt make too much sense.
How can i make the model more stable so that it will return a more stable values of validation loss?
The reasons are expained above. If it is the first case, enlarge validation set will make your loss looks more stable but it does NOT mean it fits better. My suggestion is as long as your are sure your model does not overfit (gap between train loss and validation loss are not too large ), you can just save the model which gives the lowest validation loss.
If its the second case, it can be complecated depend on your case. You could try to exclude samples in trainning set which are not "similar" with your validation set, or enlarge your model's capacity if you have enough data. Or perhapes add more metrics to monitor how well the training.