I have a multilabel classification problem, which I am trying to solve with CNNs in Pytorch. I have 80,000 training examples and 7900 classes; every example can belong to multiple classes at the same time, mean number of classes per example is 130.
The problem is that my dataset is very imbalance. For some classes, I have only ~900 examples, which is around 1%. For “overrepresented” classes I have ~12000 examples (15%). When I train the model I use BCEWithLogitsLoss from pytorch with a positive weights parameter. I calculate the weights the same way as described in the documentation: the number of negative examples divided by the number of positives.
As a result, my model overestimates almost every class… Mor minor and major classes I get almost twice as many predictions as true labels. And my AUPRC is just 0.18. Even though it’s much better than no weighting at all, since in this case the model predicts everything as zero.
So my question is, how do I improve the performance? Is there anything else I can do? I tried different batch sampling techniques (to oversample minority class), but they don’t seem to work.
I would suggest either one of these strategies
Focal Loss
A very interesting approach for dealing with un-balanced training data through tweaking of the loss function was introduced in
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He and Piotr Dollar Focal Loss for Dense Object Detection (ICCV 2017).
They propose to modify the binary cross entropy loss in a way that decrease the loss and gradient of easily classified examples while "focusing the effort" on examples where the model makes gross errors.
Hard Negative Mining
Another popular approach is to do "hard negative mining"; that is, propagate gradients only for part of the training examples - the "hard" ones.
see, e.g.:
Abhinav Shrivastava, Abhinav Gupta and Ross Girshick Training Region-based Object Detectors with Online Hard Example Mining (CVPR 2016)
#Shai has provided two strategies developed in the deep learning era. I would like to provide you some additional traditional machine learning options: over-sampling and under-sampling.
The main idea of them is to produce a more balanced dataset by sampling before starting your training. Note that you probably will face some problems such as losing the data diversity (under-sampling) and overfitting the training data (over-sampling), but it might be a good start point.
See the wiki link for more information.
I am currently turning my Binary Classification Model to a multi-class classification Model. Bare with me.. I am very knew to pytorch and Machine Learning.
Most of what I state here, I know from the following video.
https://www.youtube.com/watch?v=7q7E91pHoW4&t=654s
What I read / know is that the CrossEntropyLoss already has the Softmax function implemented, thus my output layer is linear.
What I then read / saw is that I can just choose my Model prediction by taking the torch.max() of my model output (Which comes from my last linear output. This feels weird because I Have some negative outputs and i thought I need to apply the SOftmax function first, but It seems to work right without it.
So know the big confusing question I have is, when would I use the Softmax function? Would I only use it when my loss doesnt have it implemented? BUT then I would choose my prediction based on the outputs of the SOftmax layer which wouldnt be the same as with the linear output layer.
Thank you guys for every answer this gets.
For calculating the loss using CrossEntropy you do not need softmax because CrossEntropy already includes it. However to turn model outputs to probabilities you still need to apply softmax to turn them into probabilities.
Lets say you didnt apply softmax at the end of you model. And trained it with crossentropy. And then you want to evaluate your model with new data and get outputs and use these outputs for classification. At this point you can manually apply softmax to your outputs. And there will be no problem. This is how it is usually done.
Traning()
MODEL ----> FC LAYER --->raw outputs ---> Crossentropy Loss
Eval()
MODEL ----> FC LAYER --->raw outputs --> Softmax -> Probabilites
Yes you need to apply softmax on the output layer. When you are doing binary classification you are free to use relu, sigmoid,tanh etc activation function. But when you are doing multi class classification softmax is required because softmax activation function distributes the probability throughout each output node. So that you can easily conclude that the output node which has the highest probability belongs to a particular class. Thank you. Hope this is useful!
I have a multilabel classification problem, which I am trying to solve with CNNs in Pytorch. I have 80,000 training examples and 7900 classes; every example can belong to multiple classes at the same time, mean number of classes per example is 130.
The problem is that my dataset is very imbalance. For some classes, I have only ~900 examples, which is around 1%. For “overrepresented” classes I have ~12000 examples (15%). When I train the model I use BCEWithLogitsLoss from pytorch with a positive weights parameter. I calculate the weights the same way as described in the documentation: the number of negative examples divided by the number of positives.
As a result, my model overestimates almost every class… Mor minor and major classes I get almost twice as many predictions as true labels. And my AUPRC is just 0.18. Even though it’s much better than no weighting at all, since in this case the model predicts everything as zero.
So my question is, how do I improve the performance? Is there anything else I can do? I tried different batch sampling techniques (to oversample minority class), but they don’t seem to work.
I would suggest either one of these strategies
Focal Loss
A very interesting approach for dealing with un-balanced training data through tweaking of the loss function was introduced in
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He and Piotr Dollar Focal Loss for Dense Object Detection (ICCV 2017).
They propose to modify the binary cross entropy loss in a way that decrease the loss and gradient of easily classified examples while "focusing the effort" on examples where the model makes gross errors.
Hard Negative Mining
Another popular approach is to do "hard negative mining"; that is, propagate gradients only for part of the training examples - the "hard" ones.
see, e.g.:
Abhinav Shrivastava, Abhinav Gupta and Ross Girshick Training Region-based Object Detectors with Online Hard Example Mining (CVPR 2016)
#Shai has provided two strategies developed in the deep learning era. I would like to provide you some additional traditional machine learning options: over-sampling and under-sampling.
The main idea of them is to produce a more balanced dataset by sampling before starting your training. Note that you probably will face some problems such as losing the data diversity (under-sampling) and overfitting the training data (over-sampling), but it might be a good start point.
See the wiki link for more information.
A project i am working on has a reinforcement learning stage using the REINFORCE algorithm. The used model has a final softmax activation layer and because of that a negative learning rate is used as a replacement for negative rewards. I have some doubts about this process and can't find much literature on using a negative learning rate.
Does reinforement learning work with switching learning rate between positive and negative? and if not what would be a better approach, get rid of softmax or has keras a nice option for this?
Loss function:
def log_loss(y_true, y_pred):
'''
Keras 'loss' function for the REINFORCE algorithm,
where y_true is the action that was taken, and updates
with the negative gradient will make that action more likely.
We use the negative gradient because keras expects training data
to minimize a loss function.
'''
return -y_true * K.log(K.clip(y_pred, K.epsilon(), 1.0 - K.epsilon()))
Switching learning rate:
K.set_value(optimizer.lr, lr * (+1 if won else -1))
learner_net.train_on_batch(np.concatenate(st_tensor, axis=0),
np.concatenate(mv_tensor, axis=0))
Update, test results
I ran a test with only positive reinforcement samples, omitting all negative examples and thus the negative learning rate. Winning rate is rising, it is improving and i can safely assume using a negative learning rate is not correct.
anybody any thoughts on how we should implement it?
Update, model explanation
We are trying to recreate AlphaGo as described by DeepMind, the slow policy net:
For the first stage of the training pipeline, we build on prior work
on predicting expert moves in the game of Go using supervised
learning13,21–24. The SL policy network pσ(a| s) alternates between convolutional
layers with weights σ, and rectifier nonlinearities. A final softmax
layer outputs a probability distribution over all legal moves a.
Not sure if it the best way but at least i found a way that works.
for all negative training samples i reuse the network prediction, set the action i want to unlearn to zero and adjust all values to sum up to one again
i tried several ways to adjust them afterwards but haven't run enough tests to be sure what works best:
apply softmax ( action that has to be unlearned gets a nonzero value.. )
redistribute old action value over all other actions
set all illigal action values to zero and distribute the total removed value
distribute value proportional to value of other values
probably there are several other ways to do so, it might depend on use case what works best and there might be a better way to do so but this one works at least.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 10 months ago.
Improve this question
I have a problem where I am trying to create a neural network for Tic-Tac-Toe. However, for some reason, training the neural network causes it to produce nearly the same output for any given input.
I did take a look at Artificial neural networks benchmark, but my network implementation is built for neurons with the same activation function for each neuron, i.e. no constant neurons.
To make sure the problem wasn't just due to my choice of training set (1218 board states and moves generated by a genetic algorithm), I tried to train the network to reproduce XOR. The logistic activation function was used. Instead of using the derivative, I multiplied the error by output*(1-output) as some sources suggested that this was equivalent to using the derivative. I can put the Haskell source on HPaste, but it's a little embarrassing to look at. The network has 3 layers: the first layer has 2 inputs and 4 outputs, the second has 4 inputs and 1 output, and the third has 1 output. Increasing to 4 neurons in the second layer didn't help, and neither did increasing to 8 outputs in the first layer.
I then calculated errors, network output, bias updates, and the weight updates by hand based on http://hebb.mit.edu/courses/9.641/2002/lectures/lecture04.pdf to make sure there wasn't an error in those parts of the code (there wasn't, but I will probably do it again just to make sure). Because I am using batch training, I did not multiply by x in equation (4) there. I am adding the weight change, though http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-2.html suggests to subtract it instead.
The problem persisted, even in this simplified network. For example, these are the results after 500 epochs of batch training and of incremental training.
Input |Target|Output (Batch) |Output(Incremental)
[1.0,1.0]|[0.0] |[0.5003781562785173]|[0.5009731800870864]
[1.0,0.0]|[1.0] |[0.5003740346965251]|[0.5006347214672715]
[0.0,1.0]|[1.0] |[0.5003734471544522]|[0.500589332376345]
[0.0,0.0]|[0.0] |[0.5003674110937019]|[0.500095157458231]
Subtracting instead of adding produces the same problem, except everything is 0.99 something instead of 0.50 something. 5000 epochs produces the same result, except the batch-trained network returns exactly 0.5 for each case. (Heck, even 10,000 epochs didn't work for batch training.)
Is there anything in general that could produce this behavior?
Also, I looked at the intermediate errors for incremental training, and the although the inputs of the hidden/input layers varied, the error for the output neuron was always +/-0.12. For batch training, the errors were increasing, but extremely slowly and the errors were all extremely small (x10^-7). Different initial random weights and biases made no difference, either.
Note that this is a school project, so hints/guides would be more helpful. Although reinventing the wheel and making my own network (in a language I don't know well!) was a horrible idea, I felt it would be more appropriate for a school project (so I know what's going on...in theory, at least. There doesn't seem to be a computer science teacher at my school).
EDIT: Two layers, an input layer of 2 inputs to 8 outputs, and an output layer of 8 inputs to 1 output, produces much the same results: 0.5+/-0.2 (or so) for each training case. I'm also playing around with pyBrain, seeing if any network structure there will work.
Edit 2: I am using a learning rate of 0.1. Sorry for forgetting about that.
Edit 3: Pybrain's "trainUntilConvergence" doesn't get me a fully trained network, either, but 20000 epochs does, with 16 neurons in the hidden layer. 10000 epochs and 4 neurons, not so much, but close. So, in Haskell, with the input layer having 2 inputs & 2 outputs, hidden layer with 2 inputs and 8 outputs, and output layer with 8 inputs and 1 output...I get the same problem with 10000 epochs. And with 20000 epochs.
Edit 4: I ran the network by hand again based on the MIT PDF above, and the values match, so the code should be correct unless I am misunderstanding those equations.
Some of my source code is at http://hpaste.org/42453/neural_network__not_working; I'm working on cleaning my code somewhat and putting it in a Github (rather than a private Bitbucket) repository.
All of the relevant source code is now at https://github.com/l33tnerd/hsann.
I've had similar problems, but was able to solve by changing these:
Scale down the problem to manageable size. I first tried too many inputs, with too many hidden layer units. Once I scaled down the problem, I could see if the solution to the smaller problem was working. This also works because when it's scaled down, the times to compute the weights drop down significantly, so I can try many different things without waiting.
Make sure you have enough hidden units. This was a major problem for me. I had about 900 inputs connecting to ~10 units in the hidden layer. This was way too small to quickly converge. But also became very slow if I added additional units. Scaling down the number of inputs helped a lot.
Change the activation function and its parameters. I was using tanh at first. I tried other functions: sigmoid, normalized sigmoid, Gaussian, etc.. I also found that changing the function parameters to make the functions steeper or shallower affected how quickly the network converged.
Change learning algorithm parameters. Try different learning rates (0.01 to 0.9). Also try different momentum parameters, if your algo supports it (0.1 to 0.9).
Hope this helps those who find this thread on Google!
So I realise this is extremely late for the original post, but I came across this because I was having a similar problem and none of the reasons posted here cover what was wrong in my case.
I was working on a simple regression problem, but every time I trained the network it would converge to a point where it was giving me the same output (or sometimes a few different outputs) for each input. I played with the learning rate, the number of hidden layers/nodes, the optimization algorithm etc but it made no difference. Even when I looked at a ridiculously simple example, trying to predict the output (1d) of two different inputs (1d):
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class net(nn.Module):
def __init__(self, obs_size, hidden_size):
super(net, self).__init__()
self.fc = nn.Linear(obs_size, hidden_size)
self.out = nn.Linear(hidden_size, 1)
def forward(self, obs):
h = F.relu(self.fc(obs))
return self.out(h)
inputs = np.array([[0.5],[0.9]])
targets = torch.tensor([3.0, 2.0], dtype=torch.float32)
network = net(1,5)
optimizer = torch.optim.Adam(network.parameters(), lr=0.001)
for i in range(10000):
out = network(torch.tensor(inputs, dtype=torch.float32))
loss = F.mse_loss(out, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("Loss: %f outputs: %f, %f"%(loss.data.numpy(), out.data.numpy()[0], out.data.numpy()[1]))
but STILL it was always outputting the average value of the outputs for both inputs. It turns out the reason is that the dimensions of my outputs and targets were not the same: the targets were Size[2], and the outputs were Size[2,1], and for some reason PyTorch was broadcasting the outputs to be Size[2,2] in the MSE loss, which completely messes everything up. Once I changed:
targets = torch.tensor([3.0, 2.0], dtype=torch.float32)
to
targets = torch.tensor([[3.0], [2.0]], dtype=torch.float32)
It worked as it should. This was obviously done with PyTorch, but I suspect maybe other libraries broadcast variables in the same way.
For me it was happening exactly like in your case, the output of neural network was always the same no matter the training & number of layers etc.
Turns out my back-propagation algorithm had a problem. At one place I was multiplying by -1 where it wasn't required.
There could be another problem like this. The question is how to debug it?
Steps to debug:
Step1 : Write the algorithm such that it can take variable number of input layers and variable number of input & output nodes.
Step2 : Reduce the hidden layers to 0. Reduce input to 2 nodes, output to 1 node.
Step3 : Now train for binary-OR-Operation.
Step4 : If it converges correctly, go to Step 8.
Step5 : If it doesn't converge, train it only for 1 training sample
Step6 : Print all the forward and prognostication variables (weights, node-outputs, deltas etc)
Step7 : Take pen&paper and calculate all the variables manually.
Step8 : Cross verify the values with algorithm.
Step9 : If you don't find any problem with 0 hidden layers. Increase hidden layer size to 1. Repeat step 5,6,7,8
It sounds like a lot of work, but it works very well IMHO.
I know, that for the original post this is far, too late but maybe I can help someone with this, as I faced the same problem.
For me the problem was, that my input data had missing values in important columns, where the training/test data were not missing. I replaced these values with zero values and voilà, suddenly the results were plausible. So maybe check your data, maybe it si misrepresented
It's hard to tell without seeing a code sample but it is possible occure for a net because its number of hidden neron.with incresing in number of neron and number of hiden layer it is not possible to train a net with small set of training data.until it is possible to make a net with smaller layer and nerons it is amiss to use a larger net.therefore perhaps your problem solved with attention to this matters.
I haven't tested it with the XOR problem in the question, but for my original dataset based on Tic-Tac-Toe, I believe that I have gotten the network to train somewhat (I only ran 1000 epochs, which wasn't enough): the quickpropagation network can win/tie over half of its games; backpropagation can get about 41%. The problems came down to implementation errors (small ones) and not understanding the difference between the error derivative (which is per-weight) and the error for each neuron, which I did not pick up on in my research. #darkcanuck's answer about training the bias similarly to a weight would probably have helped, though I didn't implement it. I also rewrote my code in Python so that I could more easily hack with it. Therefore, although I haven't gotten the network to match the minimax algorithm's efficiency, I believe that I have managed to solve the problem.
I faced a similar issue earlier when my data was not properly normalized. Once I normalized the data everything ran correctly.
Recently, I faced this issue again and after debugging, I found that there can be another reason for neural networks giving the same output. If you have a neural network that has a weight decay term such as that in the RSNNS package, make sure that your decay term is not so large that all weights go to essentially 0.
I was using the caret package for in R. Initially, I was using a decay hyperparameter = 0.01. When I looked at the diagnostics, I saw that the RMSE was being calculated for each fold (of cross validation), but the Rsquared was always NA. In this case all predictions were coming out to the same value.
Once I reduced the decay to a much lower value (1E-5 and lower), I got the expected results.
I hope this helps.
I was running into the same problem with my model when number of layers is large. I was using a learning rate of 0.0001. When I lower the learning rate to 0.0000001 the problem seems solved. I think algorithms stuck on local minumums when learning rate is too low
It's hard to tell without seeing a code sample, but a bias bug can have that effect (e.g. forgetting to add the bias to the input), so I would take a closer look at that part of the code.
Based on your comments, I'd agree with #finnw that you have a bias problem. You should treat the bias as a constant "1" (or -1 if you prefer) input to each neuron. Each neuron will also have its own weight for the bias, so a neuron's output should be the sum of the weighted inputs, plus the bias times its weight, passed through the activation function. Bias weights are updated during training just like the other weights.
Fausett's "Fundamentals of Neural Networks" (p.300) has an XOR example using binary inputs and a network with 2 inputs, 1 hidden layer of 4 neurons and one output neuron. Weights are randomly initialized between +0.5 and -0.5. With a learning rate of 0.02 the example network converges after about 3000 epochs. You should be able to get a result in the same ballpark if you get the bias problems (and any other bugs) ironed out.
Also note that you cannot solve the XOR problem without a hidden layer in your network.
I encountered a similar issue, I found out that it was a problem with how my weights were being generated.
I was using:
w = numpy.random.rand(layers[i], layers[i+1])
This generated a random weight between 0 and 1.
The problem was solved when I used randn() instead:
w = numpy.random.randn(layers[i], layers[i+1])
This generates negative weights, which helped my outputs become more varied.
I ran into this exact issue. I was predicting 6 rows of data with 1200+ columns using nnet.
Each column would return a different prediction but all of the rows in that column would be the same value.
I got around this by increasing the size parameter significantly. I increased it from 1-5 to 11+.
I have also heard that decreasing your decay rate can help.
I've had similar problems with machine learning algorithms and when I looked at the code I found random generators that were not really random. If you do not use a new random seed (such Unix time for example, see http://en.wikipedia.org/wiki/Unix_time) then it is possible to get the exact same results over and over again.