We are running jmeter performance test scripts on Linux servers. It executes and produces results but threads are not finishing since the beginning of steps . We see FINISHED = 0 in the initial steps and of some value at the end.
Any feedback on why threads are not finishing ?
Sample test result
sh apache-jmeter-2.13/bin/jmeter.sh -n -t "PKS10-test-060221.jmx" -l jmeter_log.log -JL7.rampup=10 -JL7.duration=900 -JL7.thread_delay=0 -JL7.validations_per_issuance=100 -JL7.threads=75 | tee jmeter_console.log
Creating summariser
Created the tree successfully using PKS10-test-060221.jmx
Starting the test
Waiting for possible shutdown message on port 4445
summary + 1560 in 15.1s = 103.2/s Avg: 471 Min: 192 Max: 3710 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary + 4846 in 30s = 161.5/s Avg: 463 Min: 224 Max: 1619 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 6406 in 45.1s = 142.0/s Avg: 465 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4500 in 30s = 150.0/s Avg: 500 Min: 223 Max: 1954 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 10906 in 75.1s = 145.2/s Avg: 480 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4731 in 30s = 157.7/s Avg: 475 Min: 223 Max: 1824 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 15637 in 105s = 148.8/s Avg: 478 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4537 in 30s = 151.2/s Avg: 496 Min: 204 Max: 2109 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 20174 in 135s = 149.3/s Avg: 482 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4687 in 30s = 156.2/s Avg: 479 Min: 223 Max: 2064 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 24861 in 165s = 150.6/s Avg: 482 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4642 in 30s = 154.7/s Avg: 484 Min: 223 Max: 1754 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 29503 in 195s = 151.2/s Avg: 482 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4521 in 30s = 150.7/s Avg: 497 Min: 197 Max: 2167 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 34024 in 225s = 151.1/s Avg: 484 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4662 in 30s = 155.4/s Avg: 483 Min: 224 Max: 1712 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 38686 in 255s = 151.6/s Avg: 484 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4478 in 30s = 149.2/s Avg: 503 Min: 221 Max: 2655 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 43164 in 285s = 151.4/s Avg: 486 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4355 in 30s = 145.2/s Avg: 516 Min: 222 Max: 2079 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 47519 in 315s = 150.8/s Avg: 489 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4682 in 30s = 155.8/s Avg: 479 Min: 223 Max: 2092 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 52201 in 345s = 151.2/s Avg: 488 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4466 in 30.1s = 148.3/s Avg: 505 Min: 213 Max: 3105 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 56667 in 375s = 151.0/s Avg: 489 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4461 in 30s = 149.5/s Avg: 503 Min: 223 Max: 2508 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 61128 in 405s = 150.9/s Avg: 490 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 3926 in 30s = 130.9/s Avg: 573 Min: 223 Max: 2266 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 65054 in 435s = 149.5/s Avg: 495 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4635 in 30s = 154.4/s Avg: 486 Min: 223 Max: 1854 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 69689 in 465s = 149.8/s Avg: 494 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4287 in 30s = 142.9/s Avg: 524 Min: 222 Max: 2324 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 73976 in 495s = 149.4/s Avg: 496 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4997 in 30s = 166.6/s Avg: 447 Min: 195 Max: 2201 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 78973 in 525s = 150.4/s Avg: 493 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4985 in 30s = 166.2/s Avg: 452 Min: 222 Max: 2160 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 83958 in 555s = 151.2/s Avg: 491 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4795 in 30s = 159.8/s Avg: 470 Min: 201 Max: 2118 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 88753 in 585s = 151.7/s Avg: 489 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4899 in 30.1s = 162.9/s Avg: 458 Min: 221 Max: 2347 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 93652 in 615s = 152.2/s Avg: 488 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4715 in 30s = 157.6/s Avg: 477 Min: 222 Max: 2109 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 98367 in 645s = 152.5/s Avg: 487 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4602 in 30s = 153.4/s Avg: 488 Min: 222 Max: 2142 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 102969 in 675s = 152.5/s Avg: 487 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 4724 in 30s = 157.5/s Avg: 476 Min: 202 Max: 3099 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 107693 in 705s = 152.7/s Avg: 487 Min: 192 Max: 3710 Err: 0 (0.00%)
summary + 3963 in 30s = 132.1/s Avg: 567 Min: 193 Max: 3743 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 111656 in 735s = 151.9/s Avg: 490 Min: 192 Max: 3743 Err: 0 (0.00%)
summary + 4840 in 30s = 161.3/s Avg: 463 Min: 222 Max: 2726 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 116496 in 765s = 152.3/s Avg: 489 Min: 192 Max: 3743 Err: 0 (0.00%)
summary + 4493 in 30s = 149.7/s Avg: 501 Min: 222 Max: 2199 Err: 0 (0.00%) Active: 75 Started: 75 Finished: 0
summary = 120989 in 795s = 152.2/s Avg: 489
summary = 135136 in 885s = 152.7/s Avg: 488 Min: 192 Max: 3743 Err: 0 (0.00%)
summary + 2313 in 15.4s = 150.2/s Avg: 495 Min: 222 Max: 2085 Err: 0 (0.00%) Active: 0 Started: 75 Finished: 75
summary = 137449 in 901s = 152.6/s Avg: 488 Min: 192 Max: 3743 Err: 0 (0.00%)
You're looking at output of JMeter's summariser which shows the number of
number of started threads
number of active threads
number of finished threads
number of executed samplers
throughput
average, minimum and maximum response times
percentage of errors.
It looks like you're running your test with 75 threads (virtual users), once JMeter launches the thread it starts executing Samplers upside down (or according to Logic Controllers). When there are no more samplers to execute and loops to iterate the thread is being shut down.
So Finished: 0 lines mean that there are 75 active threads which are executing Samplers and none of them has finished its job yet.
Related
I have this data set ( txt).
For example:
input:
0 275,276,45,278
1 442,22,455,0,456,457,458
75 62,263,264,265,266,267
80 0,516,294,517,518,519
I would like as output
output:
0 275
0 276
0 45
...
1 442
1 22
...
80 0
I use unix terminal. Let me know if you have some ideas. Thanks
Ignoring the last part you mentioned "80 454", I found a solution to print as required.
Suppose all these values are stored in a file names "stack.txt", the following bash code will be useful.
#!/bin/bash
while read i;do
f=$(awk -F" " '{print $1}' <<< $i)
line=$(cut -d" " -f2 <<<$i)
for m in $(echo $line | sed "s/,/ /g"); do
echo $f" "$m
done
echo "..."
done<stack.txt
Output will be
0 275
0 276
0 277
0 278
0 279
0 280
0 281
0 282
0 283
...
1 442
1 22
1 455
1 0
1 456
1 457
1 458
...
75 62
75 263
75 264
75 265
75 266
75 267
...
80 0
80 516
80 294
80 517
80 518
80 519
...
Using a perl one-liner:
perl -lane 'print "$F[0] $_" for split /,/, $F[1]' input.txt
{m,n,g}awk 'gsub(",",RS $!_ FS)^_'
0 275
0 276
0 277
0 278
0 279
0 280
0 281
0 282
0 283
1 442
1 22
1 455
1 0
1 456
1 457
1 458
75 62
75 263
75 264
75 265
75 266
75 267
80 0
80 516
80 294
80 517
80 518
80 519
I have the following Dataframe called df_cam_cb_days:
3m 6m 9m 1y 18m 24m Effective
2021-03-30 49 49 49 49 49 49 2021-03-31
2021-05-13 40 44 44 44 44 44 2021-05-14
2021-06-08 0 26 26 26 26 26 2021-06-09
2021-07-14 0 36 36 36 36 36 2021-07-15
2021-08-31 0 26 48 48 48 48 2021-09-01
2021-10-13 0 0 43 43 43 43 2021-10-14
2021-12-14 0 0 27 62 62 62 2021-12-15
2022-01-26 0 0 0 43 43 43 2022-01-27
2022-03-30 0 0 0 14 63 63 2022-03-31
2022-05-11 0 0 0 0 42 42 2022-05-12
2022-06-08 0 0 0 0 28 28 2022-06-09
2022-07-13 0 0 0 0 35 35 2022-07-14
2022-08-31 0 0 0 0 27 49 2022-09-01
2022-10-12 0 0 0 0 0 42 2022-10-13
2022-12-14 0 0 0 0 0 63 2022-12-15
2023-01-25 0 0 0 0 0 42 2023-01-26
2023-02-10 0 0 0 0 0 15 2023-02-11
and I have the following function that receives the DataFrame and an array:
mon_policy =np.array([.5,
.75,
.75,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1])
#returns numpy array with Breakeven info
def cam_be_mon(mp,df):
columns = ['3m','6m','9m','1y','18m','24m']
days_array = np.array([0,0,0,0,0,0])
days_array = df_cam_cb_days[columns].sum(axis=0).values
data_array= df_cam_cb_days[columns].values.T
c= np.log(mp/36000+1)
be = np.dot(data_array,c)
be = (np.exp(be[0:])-1)*36000/days_array
return be
target = np.array([.3525,.415,.475,.56,.715,.916366])
cam_be_mon(mon_policy,df_cam_cb_days)
The Function as is returns the solution: array([0.61281788, 0.76943154, 0.84886388, 0.88890188,
0.92955637, 0.95151633])
I need to find the set of <mon_policy> that returns a solution = to target , or the closest if there is no solution.
I found the answer with scipy.optimize
We have deployed a global Apache Cassandra cluster (node: 12, RF: 3, version: 3.11.2) in our production environment. We are running into an issue where running major compaction on column family is failing to clear tombstones from one node (out of 3 replicas) even though metadata information shows min timestamp passed gc_grace_seconds set on the table.
Here is sstable metadata output
SSTable: mc-4302-big
Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
Bloom Filter FP chance: 0.010000
Minimum timestamp: 1
Maximum timestamp: 1560326019515476
SSTable min local deletion time: 1560233203
SSTable max local deletion time: 2147483647
Compressor: org.apache.cassandra.io.compress.LZ4Compressor
Compression ratio: 0.8808303792058351
TTL min: 0
TTL max: 0
First token: -9201661616334346390 (key=bca773eb-ecbb-49ec-9330-cc16da310b58:::)
Last token: 9117719078924671254 (key=7c23b975-5354-4c82-82e5-1762bac75a8d:::)
minClustringValues: [00000f8f-74a9-4ce3-9d87-0a4dabef30c1]
maxClustringValues: [ffffc966-a02c-4e1f-bdd1-256556624288]
Estimated droppable tombstones: 46.31761624099541
SSTable Level: 0
Repaired at: 0
Replay positions covered: {}
totalColumnsSet: 0
totalRows: 618382
Estimated tombstone drop times:
1560233680: 353
1560234658: 237
1560235604: 176
1560236803: 471
1560237652: 402
1560238342: 195
1560239166: 373
1560239969: 356
1560240586: 262
1560241207: 247
1560242037: 387
1560242847: 357
1560243742: 280
1560244469: 283
1560245095: 353
1560245957: 357
1560246773: 362
1560247956: 449
1560249034: 217
1560249849: 310
1560251080: 296
1560251984: 304
1560252993: 239
1560253907: 407
1560254839: 977
1560255761: 671
1560256486: 317
1560257199: 679
1560258020: 703
1560258795: 507
1560259378: 298
1560260093: 2302
1560260869: 2488
1560261535: 2818
1560262176: 2842
1560262981: 1685
1560263708: 1830
1560264308: 808
1560264941: 1990
1560265753: 1340
1560266708: 2174
1560267629: 2253
1560268400: 1627
1560269174: 2347
1560270019: 2579
1560270888: 3947
1560271690: 1727
1560272446: 2573
1560273249: 1523
1560274086: 3438
1560275149: 2737
1560275966: 3487
1560276814: 4101
1560277660: 2012
1560278617: 1198
1560279680: 769
1560280441: 1337
1560281033: 608
1560281876: 2065
1560282546: 2926
1560283128: 6305
1560283836: 824
1560284574: 71
1560285166: 140
1560285828: 118
1560286404: 83
1560295835: 72
1560296951: 456
1560297814: 670
1560298496: 271
1560299333: 473
1560300159: 284
1560300831: 127
1560301551: 536
1560302309: 425
1560303302: 860
1560304064: 465
1560304782: 319
1560305657: 323
1560306552: 236
1560307454: 368
1560308409: 320
1560309178: 210
1560310091: 177
1560310881: 85
1560311970: 147
1560312706: 76
1560313495: 88
1560314847: 687
1560315817: 1618
1560316544: 1245
1560317423: 5361
1560318491: 2060
1560319595: 5853
1560320587: 5390
1560321473: 3868
1560322644: 5784
1560323703: 6861
1560324838: 7200
1560325744: 5642
Count Row Size Cell Count
1 0 3054
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
10 0 0
12 0 0
14 0 0
17 0 0
20 0 0
24 0 0
29 0 0
35 0 0
42 0 0
50 0 0
60 98 0
72 49 0
86 46 0
103 2374 0
124 39 0
149 36 0
179 43 0
215 18 0
258 26 0
310 24 0
372 18 0
446 16 0
535 19 0
642 27 0
770 17 0
924 12 0
1109 14 0
1331 23 0
1597 20 0
1916 12 0
2299 11 0
2759 11 0
3311 11 0
3973 12 0
4768 5 0
5722 8 0
6866 5 0
8239 5 0
9887 6 0
11864 5 0
14237 10 0
17084 1 0
20501 8 0
24601 2 0
29521 2 0
35425 3 0
42510 2 0
51012 2 0
61214 1 0
73457 2 0
88148 3 0
105778 0 0
126934 3 0
152321 2 0
182785 1 0
219342 0 0
263210 0 0
315852 0 0
379022 0 0
454826 0 0
545791 0 0
654949 0 0
785939 0 0
943127 0 0
1131752 0 0
1358102 0 0
1629722 0 0
1955666 0 0
2346799 0 0
2816159 0 0
3379391 1 0
4055269 0 0
4866323 0 0
5839588 0 0
7007506 0 0
8409007 0 0
10090808 1 0
12108970 0 0
14530764 0 0
17436917 0 0
20924300 0 0
25109160 0 0
30130992 0 0
36157190 0 0
43388628 0 0
52066354 0 0
62479625 0 0
74975550 0 0
89970660 0 0
107964792 0 0
129557750 0 0
155469300 0 0
186563160 0 0
223875792 0 0
268650950 0 0
322381140 0 0
386857368 0 0
464228842 0 0
557074610 0 0
668489532 0 0
802187438 0 0
962624926 0 0
1155149911 0 0
1386179893 0 0
1663415872 0 0
1996099046 0 0
2395318855 0 0
2874382626 0
3449259151 0
4139110981 0
4966933177 0
5960319812 0
7152383774 0
8582860529 0
10299432635 0
12359319162 0
14831182994 0
17797419593 0
21356903512 0
25628284214 0
30753941057 0
36904729268 0
44285675122 0
53142810146 0
63771372175 0
76525646610 0
91830775932 0
110196931118 0
132236317342 0
158683580810 0
190420296972 0
228504356366 0
274205227639 0
329046273167 0
394855527800 0
473826633360 0
568591960032 0
682310352038 0
818772422446 0
982526906935 0
1179032288322 0
1414838745986 0
Estimated cardinality: 3054
EncodingStats minTTL: 0
EncodingStats minLocalDeletionTime: 1560233203
EncodingStats minTimestamp: 1
KeyType: org.apache.cassandra.db.marshal.CompositeType(org.apache.cassandra.db.marshal.UTF8Type,org.apache.cassandra.db.marshal.UTF8Type,org.apache.cassandra.db.marshal.UTF8Type,org.apache.cassandra.db.marshal.UTF8Type)
ClusteringTypes: [org.apache.cassandra.db.marshal.UUIDType]
StaticColumns: {}
RegularColumns: {}
So far here is what we have tried,
1) major compaction with lower gc_grace_seconds
2) nodetool garbagecollect
3) nodetool scrub
None of the above methods is helping. Again, this is only happening for one node (out of total 3 replicas)
The tombstone markers generated during your major compaction are just that, markers. The data has been removed but a delete marker is left in place so that the other replicas can have gc_grace_seconds to process them too. The tombstone markers are fully dropped the next time the SSTable is compacted. Unfortunately because you've run a major compaction (rarely ever recommended) it may be a long time until there are suitable SSTables for compaction with it to clean up the tombstones. Remember that the tombstone drop will also only happen after local_delete_time + gc_grace_seconds as defined by the table.
If you're interested in learning more about how tombstones and compaction work together in the context of delete operations I suggest reading the following articles:
https://docs.datastax.com/en/archived/cassandra/3.0/cassandra/dml/dmlAboutDeletes.html
https://thelastpickle.com/blog/2016/07/27/about-deletes-and-tombstones.html
I am trying to plot the result of an experiment with the following
set encoding iso_8859_1
set key right top font "Helvetica,17"
# set key left top font "Helvetica,18"
# set key at 100,1.25 bottom center font "Helvetica,17"
# set ylabel "Percentage of non-completed batches" font "Helvetica,18"
set ylabel "Extra frames" font "Helvetica,18"
set xlabel "Dispersion [%]" font "Helvetica,18"
unset key
set xtics font "Helvetica,18"
set ytics font "Helvetica,18"
set terminal postscript eps enhanced color #size 6.5in,3in #"Helvetica" 16 #
set output "contour.eps"
set palette rgbformulae 33,13,10
$complete << EOD
0 0 2.000400080016007
0 5 1.160696417850715
0 10 0.48028817290374226
0 15 0.5003001801080598
0 20 0.5201040208041574
0 25 0.9803921568627416
0 30 2.360472094418886
0 35 14.942988597719541
0 40 28.6972183309986
0 45 34.78783026421137
0 50 39.771817453963166
0 55 47.28837302381429
0 60 62.3124624924985
0 65 74.25940752602081
0 70 79.45589117823565
0 75 86.93477390956382
0 80 91.47829565913183
0 85 94.21884376875374
0 90 95.75915183036608
0 95 97.47949589917984
0 100 98.33966793358671
20 0 0
20 5 0
20 10 0
20 15 0
20 20 0
20 25 0
20 30 0
20 35 0
20 40 0
20 45 0
20 50 0
20 55 0
20 60 0.22022022022022414
20 65 0.26026026026025884
20 70 1.6012810248198561
20 75 7.301460292058415
20 80 13.165266106442575
20 85 22.03321993195918
20 90 33.13325330132053
20 95 42.997198879551824
20 100 52.041633306645316
40 0 0
40 5 0
40 10 0
40 15 0
40 20 0
40 25 0
40 30 0
40 35 0
40 40 0
40 45 0
40 50 0
40 55 0
40 60 0
40 65 0.020016012810253336
40 70 0.08006405124099114
40 75 1.9619619619619666
40 80 7.703081232492992
40 85 12.264905962384953
40 90 22.168867547018813
40 95 31.81909145487293
40 100 43.17727090836334
60 0 0
60 5 0
60 10 0
60 15 0
60 20 0
60 25 0
60 30 0
60 35 0
60 40 0
60 45 0
60 50 0
60 55 0
60 60 0
60 65 0
60 70 0.02000400080015563
60 75 0.7201440288057581
60 80 5.484387510008004
60 85 9.263705482192874
60 90 18.170902541524914
60 95 28.665733146629325
60 100 38.21528611444578
80 0 0
80 5 0
80 10 0
80 15 0
80 20 0
80 25 0
80 30 0
80 35 0
80 40 0
80 45 0
80 50 0
80 55 0
80 60 0
80 65 0
80 70 0
80 75 0.4604604604604656
80 80 4.02080416083217
80 85 7.78155631126225
80 90 15.835835835835832
80 95 25.690276110444177
80 100 34.90792634107286
100 0 0
100 5 0
100 10 0
100 15 0
100 20 0
100 25 0
100 30 0
100 35 0
100 40 0
100 45 0
100 50 0
100 55 0
100 60 0
100 65 0
100 70 0
100 75 0.16009605763458445
100 80 3.220644128825767
100 85 7.145716573258609
100 90 13.985594237695075
100 95 22.83370022013208
100 100 32.0328131252501
120 0 0
120 5 0
120 10 0
120 15 0
120 20 0
120 25 0
120 30 0
120 35 0
120 40 0
120 45 0
120 50 0
120 55 0
120 60 0
120 65 0
120 70 0
120 75 0.08001600320064473
120 80 2.8411364545818274
120 85 5.841168233646732
120 90 12.782556511302257
120 95 21.73303982389434
120 100 30.550550550550547
140 0 0
140 5 0
140 10 0
140 15 0
140 20 0
140 25 0
140 30 0
140 35 0
140 40 0
140 45 0
140 50 0
140 55 0
140 60 0
140 65 0
140 70 0
140 75 0.02000800320127727
140 80 2.601040416166467
140 85 5.584467574059248
140 90 12.027216329797874
140 95 20.12012012012012
140 100 29.372871168102588
160 0 0
160 5 0
160 10 0
160 15 0
160 20 0
160 25 0
160 30 0
160 35 0
160 40 0
160 45 0
160 50 0
160 55 0
160 60 0
160 65 0
160 70 0
160 75 0.02000800320127727
160 80 1.8021625951141318
160 85 5.321064212842563
160 90 10.024009603841533
160 95 18.60744297719088
160 100 29.040656919687557
180 0 0
180 5 0
180 10 0
180 15 0
180 20 0
180 25 0
180 30 0
180 35 0
180 40 0
180 45 0
180 50 0
180 55 0
180 60 0
180 65 0
180 70 0
180 75 0.020012007204317506
180 80 1.8603720744148844
180 85 4.90196078431373
180 90 10.864345738295322
180 95 18.687474989996
180 100 27.09083633453382
200 0 0
200 5 0
200 10 0
200 15 0
200 20 0
200 25 0
200 30 0
200 35 0
200 40 0
200 45 0
200 50 0
200 55 0
200 60 0
200 65 0
200 70 0
200 75 0.020012007204317506
200 80 1.3605442176870763
200 85 4.520904180836172
200 90 9.601920384076813
200 95 17.363472694538906
200 100 26.485297059411884
220 0 0
220 5 0
220 10 0
220 15 0
220 20 0
220 25 0
220 30 0
220 35 0
220 40 0
220 45 0
220 50 0
220 55 0
220 60 0
220 65 0
220 70 0
220 75 0.020012007204317506
220 80 1.241489787745298
220 85 4.520904180836172
220 90 8.805283169901944
220 95 17.18687474989996
220 100 25.825165033006602
240 0 0
240 5 0
240 10 0
240 15 0
240 20 0
240 25 0
240 30 0
240 35 0
240 40 0
240 45 0
240 50 0
240 55 0
240 60 0
240 65 0
240 70 0
240 75 0
240 80 1.0806483890334229
240 85 4.740948189637928
240 90 8.30332132853141
240 95 16.643328665733147
240 100 25.245049009801956
260 0 0
260 5 0
260 10 0
260 15 0
260 20 0
260 25 0
260 30 0
260 35 0
260 40 0
260 45 0
260 50 0
260 55 0
260 60 0
260 65 0
260 70 0
260 75 0
260 80 1.040208041608326
260 85 4.181672669067627
260 90 8.641728345669131
260 95 15.606242496998801
260 100 25.415249149489693
280 0 0
280 5 0
280 10 0
280 15 0
280 20 0
280 25 0
280 30 0
280 35 0
280 40 0
280 45 0
280 50 0
280 55 0
280 60 0
280 65 0
280 70 0
280 75 0
280 80 0.9603841536614643
280 85 3.8007601520304024
280 90 7.74464678807284
280 95 15.395395395395395
280 100 24.16966786714686
300 0 0
300 5 0
300 10 0
300 15 0
300 20 0
300 25 0
300 30 0
300 35 0
300 40 0
300 45 0
300 50 0
300 55 0
300 60 0
300 65 0
300 70 0
300 75 0
300 80 0.860860860860857
300 85 3.923923923923922
300 90 7.401480296059216
300 95 14.811849479583671
300 100 25.27516509905944
320 0 0
320 5 0
320 10 0
320 15 0
320 20 0
320 25 0
320 30 0
320 35 0
320 40 0
320 45 0
320 50 0
320 55 0
320 60 0
320 65 0
320 70 0
320 75 0
320 80 1.00040016006403
320 85 3.7222333400039997
320 90 7.923169267707086
320 95 15.398478173808572
320 100 22.864572914582915
340 0 0
340 5 0
340 10 0
340 15 0
340 20 0
340 25 0
340 30 0
340 35 0
340 40 0
340 45 0
340 50 0
340 55 0
340 60 0
340 65 0
340 70 0
340 75 0
340 80 0.8001600320064028
340 85 3.640728145629124
340 90 7.488986784140971
340 95 14.165666266506605
340 100 23.024604920984192
360 0 0
360 5 0
360 10 0
360 15 0
360 20 0
360 25 0
360 30 0
360 35 0
360 40 0
360 45 0
360 50 0
360 55 0
360 60 0
360 65 0
360 70 0
360 75 0
360 80 0.7204322593556078
360 85 3.3806761352270454
360 90 6.742697078831528
360 95 14.943910256410254
360 100 22.08883553421368
380 0 0
380 5 0
380 10 0
380 15 0
380 20 0
380 25 0
380 30 0
380 35 0
380 40 0
380 45 0
380 50 0
380 55 0
380 60 0
380 65 0
380 70 0
380 75 0
380 80 0.5404323458767069
380 85 3.5007001400280013
380 90 6.8254603682946335
380 95 14.522904580916185
380 100 22.246696035242287
400 0 0
400 5 0
400 10 0
400 15 0
400 20 0
400 25 0
400 30 0
400 35 0
400 40 0
400 45 0
400 50 0
400 55 0
400 60 0
400 65 0
400 70 0
400 75 0
400 80 0.48067294211896483
400 85 3.3633633633633586
400 90 6.242496998799519
400 95 14.068441064638781
400 100 23.324664932986593
420 0 0
420 5 0
420 10 0
420 15 0
420 20 0
420 25 0
420 30 0
420 35 0
420 40 0
420 45 0
420 50 0
420 55 0
420 60 0
420 65 0
420 70 0
420 75 0
420 80 0.4003202562049668
420 85 3.141256502601042
420 90 6.761352270454091
420 95 13.568140884530722
420 100 22.98919567827131
440 0 0
440 5 0
440 10 0
440 15 0
440 20 0
440 25 0
440 30 0
440 35 0
440 40 0
440 45 0
440 50 0
440 55 0
440 60 0
440 65 0
440 70 0
440 75 0
440 80 0.200080032012806
440 85 3.0218130878527094
440 90 6.4051240992794245
440 95 13.4453781512605
440 100 21.024204840968196
460 0 0
460 5 0
460 10 0
460 15 0
460 20 0
460 25 0
460 30 0
460 35 0
460 40 0
460 45 0
460 50 0
460 55 0
460 60 0
460 65 0
460 70 0
460 75 0
460 80 0.4601840736294549
460 85 2.7005401080216096
460 90 6.841368273654735
460 95 12.70508203281312
460 100 20.92837134853942
480 0 0
480 5 0
480 10 0
480 15 0
480 20 0
480 25 0
480 30 0
480 35 0
480 40 0
480 45 0
480 50 0
480 55 0
480 60 0
480 65 0
480 70 0
480 75 0
480 80 0.3800760152030458
480 85 3.0224179343474766
480 90 5.542216886754703
480 95 13.522704540908181
480 100 21.87750200160128
500 0 0
500 5 0
500 10 0
500 15 0
500 20 0
500 25 0
500 30 0
500 35 0
500 40 0
500 45 0
500 50 0
500 55 0
500 60 0
500 65 0
500 70 0
500 75 0
500 80 0.46027616569942476
500 85 2.901741044626771
500 90 6.162464985994398
500 95 13.265306122448983
500 100 19.603524229074885
EOD
set contour base
set cntrparam level incremental 0, 10, 100
unset surface
set table 'cont.dat'
splot '$complete'
unset table
plot [0:100][0:150] '$complete' using 2:1:3 with image , 'cont.dat' w l lt -1 lw 1.5
and the figure is
which has the isolines rotated. I would like to ask how to rotate the isolines.
Besides, I would like to ask how I could make a plot of the data with colors not blurred like this
to compare which of the two represents better the data block.
Regards
If you do not specify using ... gnuplot will plot using 1:2, but in your case you need 2:1, that's why x and y are switched (rotated).
If you add/change the following lines:
set palette maxcolors 10
plot [0:100][0:150] '$complete' using 2:1:3 with image , 'cont.dat' u 2:1 w l lt -1 lw 1.5
You should get something like this:
I'm running jmeter from the command line with a 300 second duration.
However it rarely finishes the whole job and returns to the command line - I mostly have to cancel it.
This is what I see:
C:\dev\tools\apache-jmeter-3.1\bin>jmeter.bat -n -t c:/dev/workspace/docs/JMeter-stress2.jmx -j c:/dev/log/jmeter.log -l c:/dev/log/jmeter-results.csv
Writing log file to: c:\dev\log\jmeter.log
Creating summariser <summary>
Created the tree successfully using c:/dev/workspace/docs/JMeter-stress2.jmx
Starting the test # Tue Mar 07 15:43:07 GMT 2017 (1488901387136)
Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445
summary + 1573 in 00:00:23 = 69.0/s Avg: 166 Min: 47 Max: 2175 Err: 0 (0.00%) Active: 12 Started: 12 Finished: 0
summary + 2135 in 00:00:30 = 71.3/s Avg: 150 Min: 44 Max: 4022 Err: 0 (0.00%) Active: 12 Started: 12 Finished: 0
summary = 3708 in 00:00:53 = 70.3/s Avg: 157 Min: 44 Max: 4022 Err: 0 (0.00%)
summary + 2039 in 00:00:30 = 68.0/s Avg: 187 Min: 44 Max: 31024 Err: 0 (0.00%) Active: 12 Started: 12 Finished: 0
summary = 5747 in 00:01:23 = 69.4/s Avg: 168 Min: 44 Max: 31024 Err: 0 (0.00%)
summary + 2051 in 00:00:30 = 68.3/s Avg: 168 Min: 41 Max: 30813 Err: 0 (0.00%) Active: 12 Started: 12 Finished: 0
summary = 7798 in 00:01:53 = 69.2/s Avg: 168 Min: 41 Max: 31024 Err: 0 (0.00%)
summary + 2296 in 00:00:30 = 76.5/s Avg: 168 Min: 41 Max: 32443 Err: 0 (0.00%) Active: 12 Started: 12 Finished: 0
summary = 10094 in 00:02:23 = 70.7/s Avg: 168 Min: 41 Max: 32443 Err: 0 (0.00%)
summary + 1015 in 00:00:30 = 33.8/s Avg: 348 Min: 42 Max: 30255 Err: 5 (0.49%) Active: 12 Started: 12 Finished: 0
summary = 11109 in 00:02:53 = 64.3/s Avg: 184 Min: 41 Max: 32443 Err: 5 (0.05%)
summary + 1880 in 00:00:30 = 62.6/s Avg: 177 Min: 41 Max: 30265 Err: 0 (0.00%) Active: 12 Started: 12 Finished: 0
summary = 12989 in 00:03:23 = 64.1/s Avg: 183 Min: 41 Max: 32443 Err: 5 (0.04%)
summary + 1499 in 00:00:30 = 50.0/s Avg: 262 Min: 41 Max: 30417 Err: 5 (0.33%) Active: 12 Started: 12 Finished: 0
summary = 14488 in 00:03:53 = 62.2/s Avg: 191 Min: 41 Max: 32443 Err: 10 (0.07%)
summary + 2383 in 00:00:30 = 79.4/s Avg: 148 Min: 42 Max: 3687 Err: 0 (0.00%) Active: 12 Started: 12 Finished: 0
summary = 16871 in 00:04:23 = 64.2/s Avg: 185 Min: 41 Max: 32443 Err: 10 (0.06%)
summary + 1870 in 00:00:30 = 62.3/s Avg: 172 Min: 41 Max: 30890 Err: 0 (0.00%) Active: 12 Started: 12 Finished: 0
summary = 18741 in 00:04:53 = 64.0/s Avg: 184 Min: 41 Max: 32443 Err: 10 (0.05%)
summary + 483 in 00:00:35 = 14.0/s Avg: 344 Min: 43 Max: 31082 Err: 3 (0.62%) Active: 1 Started: 12 Finished: 11
summary = 19224 in 00:05:27 = 58.7/s Avg: 188 Min: 41 Max: 32443 Err: 13 (0.07%)
Terminate batch job (Y/N)? y
The last line of output before I cancel it hangs there indefinitely until I kill it.
The errors are from kerberos, which doesn't have a good reputation in this organisation :( It puts the error logging into the *.csv output file which makes it unusable, but I guess that's a different question. I only mention it because it might be the cause of the hanging.
This is what I see in the end of the log file. Notice the timestamp of the shutdown message - the log statement before that is the last before it hangs. The errors in the logging stem from connection problems with the kerberos server.
2017/03/07 15:48:00 INFO - jmeter.reporters.Summariser: summary + 1870 in 00:00:30 = 62.3/s Avg: 172 Min: 41 Max: 30890 Err: 0 (0.00%) Active: 12 Started: 12 Finished: 0
2017/03/07 15:48:00 INFO - jmeter.reporters.Summariser: summary = 18741 in 00:04:53 = 64.0/s Avg: 184 Min: 41 Max: 32443 Err: 10 (0.05%)
2017/03/07 15:48:04 ERROR - jmeter.protocol.http.sampler.HTTPHC4Impl: Can't execute httpRequest with subject:Subject:
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: GET get_forecast 5-2
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Thread finished: GET get_forecast 5-2
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: GET get_forecast 5-1
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Thread finished: GET get_forecast 5-1
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: GET forecast with history 4-1
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Thread finished: GET forecast with history 4-1
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: POST data/save 2-2
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Thread finished: POST data/save 2-2
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: POST forecast/save 3-1
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Thread finished: POST forecast/save 3-1
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: GET forecast with history 4-3
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Thread finished: GET forecast with history 4-3
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: POST data/save 2-1
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Thread finished: POST data/save 2-1
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: GET forecast with history 4-2
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Thread finished: GET forecast with history 4-2
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: GET get_forecast 5-3
2017/03/07 15:48:07 INFO - jmeter.threads.JMeterThread: Thread finished: GET get_forecast 5-3
2017/03/07 15:48:08 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: POST data/save 2-3
2017/03/07 15:48:08 INFO - jmeter.threads.JMeterThread: Thread finished: POST data/save 2-3
2017/03/07 15:48:13 ERROR - jmeter.protocol.http.sampler.HTTPHC4Impl: Can't execute httpRequest with subject:Subject:
2017/03/07 15:48:13 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: POST forecast/save 3-3
2017/03/07 15:48:13 INFO - jmeter.threads.JMeterThread: Thread finished: POST forecast/save 3-3
2017/03/07 15:48:34 INFO - jmeter.reporters.Summariser: summary + 483 in 00:00:35 = 14.0/s Avg: 344 Min: 43 Max: 31082 Err: 3 (0.62%) Active: 1 Started: 12 Finished: 11
2017/03/07 15:48:34 INFO - jmeter.reporters.Summariser: summary = 19224 in 00:05:27 = 58.7/s Avg: 188 Min: 41 Max: 32443 Err: 13 (0.07%)
2017/03/07 15:48:34 INFO - jmeter.threads.JMeterThread: Stopping because end time detected by thread: POST forecast/save 3-2
2017/03/07 15:48:34 INFO - jmeter.threads.JMeterThread: Thread finished: POST forecast/save 3-2
2017/03/07 15:51:21 INFO - jmeter.reporters.ResultCollector: Shutdown hook started
2017/03/07 15:51:21 INFO - jmeter.reporters.ResultCollector: Shutdown hook ended
Update 2017-03-10
Only progress in defining the problem better :(
Why isn't JMeter dumping the connections when I set the connection time-out to 5 secs (connect) + 5 secs (response) on the HTTP request defaults dialog.
Why do I see a max time on the JMeter output of > 30000ms despite the JMeter connection time-out?
Why do I see no stack traces on the server-side? Possibly exceptions getting swallowed maybe.
Have you tried to lower the simulated load? I see that max response time is around 30 sec., JMeter may fail to stop after the desired because some threads may be blocked waiting for several server responses.
You should also use jvisualvm to monitor JMeter's VM while running the load test to ensure there is enough memory available, as well as look at waiting threads. It may help you to find out the issue.