I know TcpStream has stream.set_read_timeout but I need to make it in libc for Windows, but my code don´t works and I believe it is because I can't understand the way to put milliseconds in _value: *const c_char. In Rust I wrote let qtie = [100].as_ptr(); but its wrong. I also don't know how return a c_int in extern "C" fn.
use std::net::{TcpListener, TcpStream};
use std::io::{Read, Write};
use std::thread;
use std::time::Duration;
use libc::c_int;
use libc::c_char;
pub unsafe extern "C" fn setsockopt(
_socket: c_int,
_nivel: c_int,
_nombre: c_int,
_value: *const c_char,
_option_len: c_int
) -> c_int {return 0;}
fn al_cliente(mut stream: TcpStream) {
const SOL_SOCKET:i32 = 1; // También 0xffff
const SO_RCVTIMEO:i32 = 20;
const SO_SNDTIMEO:i32 = 21;
const tam_buff:usize = 10;
let mut data = [0 as u8; tam_buff];
loop {
println!("{:?}", stream);
let buska = format!("{:?}", stream);
let arrsk:Vec<&str> = buska.split(" ").collect();
let socket = arrsk[7].parse::<i32>().unwrap();
//let socket = 0;
println!("{}", socket);
let qtie = [100].as_ptr();
// Ejemplo: int nTimeout = 5000; // 5 seconds
// setsockopt(socket, SOL_SOCKET, SO_RCVTIMEO, (const char*)&nTimeout, sizeof(int));
unsafe { setsockopt(socket, SOL_SOCKET, SO_RCVTIMEO, qtie, 10); }
//stream.set_read_timeout(Some(Duration::from_secs(10)));
let ver = stream.read(&mut data).unwrap();
stream.write(&data[0..tam_buff]).unwrap();
let atexto = String::from_utf8_lossy(&data);
println!("{:?}", atexto);
}
}
fn main() {
let listener = TcpListener::bind("0.0.0.0:3333").unwrap();
println!("Server listening on port 3333");
for stream in listener.incoming() {
match stream {
Ok(stream) => {
println!("Conectado: {}", stream.peer_addr().unwrap());
let _hilo = thread::spawn(move || {
al_cliente(stream);
});
}
Err(e) => {
println!("Error: {}", e);
}
}
}
}
According to the socket manpage:
Specify the receiving or sending timeouts until reporting
an error. The argument is a struct timeval.
Luckily, the libc crate defines that structure so you can do this:
let sock_timeout = libc::timeval {
tv_sec: 10,
tv_usec: 0,
};
let result = unsafe {
libc::setsockopt(
socket,
libc::SOL_SOCKET,
libc::SO_RCVTIMEO,
&sock_timeout as *const libc::timeval as *const libc::c_void,
std::mem::size_of::<libc::timeval>() as u32,
);
};
In order to get the rust reference into a void * pointer, you need to cast it twice: once to a pointer to the type, then to the void pointer.
Note that libc also defines all the constants you need, so you don't need to define them yourself.
Also don't forget to check the return value from setsockopt. It will return 0 for success and -1 for an error. The error code will be available in errno, which in rust you can access via Error::last_os_error().raw_os_error().
Related
I want to config this file to add a number of partition option here as by default it is creating only 1 partition , but I need 10 for my data .
I dont have much knowledge of rdkafka library in rust , as I am directly using this plugin file
Can anyone guide me where can I find solution to this or what direction .
Thanks
use rdkafka::error::{KafkaError};
use rdkafka::{ClientConfig};
use rdkafka::producer::{FutureProducer, FutureRecord};
use std::fmt::Error;
use std::os::raw::{c_char, c_int, c_void};
use std::sync::mpsc::TrySendError;
use suricata::conf::ConfNode;
use suricata::{SCLogError, SCLogNotice};
const DEFAULT_BUFFER_SIZE: &str = "65535";
const DEFAULT_CLIENT_ID: &str = "rdkafka";
#[derive(Debug, Clone)]
struct ProducerConfig {
brokers: String,
topic: String,
client_id: String,
buffer: usize,
}
impl ProducerConfig {
fn new(conf: &ConfNode) -> Result<Self,Error> {
let brokers = if let Some(val) = conf.get_child_value("brokers"){
val.to_string()
}else {
SCLogError!("brokers parameter required!");
panic!();
};
let topic = if let Some(val) = conf.get_child_value("topic"){
val.to_string()
}else {
SCLogError!("topic parameter required!");
panic!();
};
let client_id = conf.get_child_value("client-id").unwrap_or(DEFAULT_CLIENT_ID);
let buffer_size = match conf
.get_child_value("buffer-size")
.unwrap_or(DEFAULT_BUFFER_SIZE)
.parse::<usize>()
{
Ok(size) => size,
Err(_) => {
SCLogError!("invalid buffer-size!");
panic!();
},
};
let config = ProducerConfig {
brokers: brokers.into(),
topic: topic.into(),
client_id: client_id.into(),
buffer: buffer_size,
};
Ok(config)
}
}
struct KafkaProducer {
producer: FutureProducer,
config: ProducerConfig,
rx: std::sync::mpsc::Receiver<String>,
count: usize,
}
impl KafkaProducer {
fn new(
config: ProducerConfig,
rx: std::sync::mpsc::Receiver<String>,
) -> Result<Self,KafkaError> {
let producer: FutureProducer = ClientConfig::new()
.set("bootstrap.servers", &config.brokers)
.set("client.id",&config.client_id)
.set("message.timeout.ms", "5000")
.create()?;
Ok(Self {
config,
producer,
rx,
count: 0,
})
}
fn run(&mut self) {
// Get a peekable iterator from the incoming channel. This allows us to
// get the next message from the channel without removing it, we can
// then remove it once its been sent to the server without error.
//
// Not sure how this will work with pipe-lining tho, will probably have
// to do some buffering here, or just accept that any log records
// in-flight will be lost.
let mut iter = self.rx.iter().peekable();
loop {
if let Some(buf) = iter.peek() {
self.count += 1;
if let Err(err) = self.producer.send_result(
FutureRecord::to(&self.config.topic)
.key("")
.payload(&buf),
) {
SCLogError!("Failed to send event to Kafka: {:?}", err);
break;
} else {
// Successfully sent. Pop it off the channel.
let _ = iter.next();
}
} else {
break;
}
}
SCLogNotice!("Producer finished: count={}", self.count,);
}
}
struct Context {
tx: std::sync::mpsc::SyncSender<String>,
count: usize,
dropped: usize,
}
unsafe extern "C" fn output_open(conf: *const c_void, init_data: *mut *mut c_void) -> c_int {
// Load configuration.
let config = ProducerConfig::new(&ConfNode::wrap(conf)).unwrap();
let (tx, rx) = std::sync::mpsc::sync_channel(config.buffer);
let mut kafka_producer = match KafkaProducer::new(config, rx) {
Ok(producer) => {
SCLogNotice!(
"KafKa Producer initialize success with brokers:{:?} | topic: {:?} | client_id: {:?} | buffer-size: {:?}",
producer.config.brokers,
producer.config.topic,
producer.config.client_id,
producer.config.buffer
);
producer
}
Err(err) => {
SCLogError!("Failed to initialize Kafka Producer: {:?}", err);
panic!()
}
};
let context = Context {
tx,
count: 0,
dropped: 0,
};
std::thread::spawn(move || {kafka_producer.run()});
// kafka_producer.run();
*init_data = Box::into_raw(Box::new(context)) as *mut _;
0
}
unsafe extern "C" fn output_close(init_data: *const c_void) {
let context = Box::from_raw(init_data as *mut Context);
SCLogNotice!(
"Kafka produce finished: count={}, dropped={}",
context.count,
context.dropped
);
std::mem::drop(context);
}
unsafe extern "C" fn output_write(
buffer: *const c_char,
buffer_len: c_int,
init_data: *const c_void,
) -> c_int {
let context = &mut *(init_data as *mut Context);
let buf = if let Ok(buf) = ffi::str_from_c_parts(buffer, buffer_len) {
buf
} else {
return -1;
};
context.count += 1;
if let Err(err) = context.tx.try_send(buf.to_string()) {
context.dropped += 1;
match err {
TrySendError::Full(_) => {
SCLogError!("Eve record lost due to full buffer");
}
TrySendError::Disconnected(_) => {
SCLogError!("Eve record lost due to broken channel{}",err);
}
}
}
00
}
unsafe extern "C" fn init_plugin() {
let file_type =
ffi::SCPluginFileType::new("kafka", output_open, output_close, output_write);
ffi::SCPluginRegisterFileType(file_type);
}
#[no_mangle]
extern "C" fn SCPluginRegister() -> *const ffi::SCPlugin {
// Rust plugins need to initialize some Suricata internals so stuff like logging works.
suricata::plugin::init();
// Register our plugin.
ffi::SCPlugin::new("Kafka Eve Filetype", "GPL-2.0", "1z3r0", init_plugin)
}
This question already has an answer here:
How to send a pointer to another thread?
(1 answer)
Closed 5 months ago.
I was able to proceed forward to implement my asynchronous udp server. However I have this error showing up twice because my variable data has type *mut u8 which is not Send:
error: future cannot be sent between threads safely
help: within `impl std::future::Future`, the trait `std::marker::Send` is not implemented for `*mut u8`
note: captured value is not `Send`
And the code (MRE):
use std::error::Error;
use std::time::Duration;
use std::env;
use tokio::net::UdpSocket;
use tokio::{sync::mpsc, task, time}; // 1.4.0
use std::alloc::{alloc, Layout};
use std::mem;
use std::mem::MaybeUninit;
use std::net::SocketAddr;
const UDP_HEADER: usize = 8;
const IP_HEADER: usize = 20;
const AG_HEADER: usize = 4;
const MAX_DATA_LENGTH: usize = (64 * 1024 - 1) - UDP_HEADER - IP_HEADER;
const MAX_CHUNK_SIZE: usize = MAX_DATA_LENGTH - AG_HEADER;
const MAX_DATAGRAM_SIZE: usize = 0x10000;
/// A wrapper for [ptr::copy_nonoverlapping] with different argument order (same as original memcpy)
unsafe fn memcpy(dst_ptr: *mut u8, src_ptr: *const u8, len: usize) {
std::ptr::copy_nonoverlapping(src_ptr, dst_ptr, len);
}
// Different from https://doc.rust-lang.org/std/primitive.u32.html#method.next_power_of_two
// Returns the [exponent] from the smallest power of two greater than or equal to n.
const fn next_power_of_two_exponent(n: u32) -> u32 {
return 32 - (n - 1).leading_zeros();
}
async fn run_server(socket: UdpSocket) {
let mut missing_indexes: Vec<u16> = Vec::new();
let mut peer_addr = MaybeUninit::<SocketAddr>::uninit();
let mut data = std::ptr::null_mut(); // ptr for the file bytes
let mut len: usize = 0; // total len of bytes that will be written
let mut layout = MaybeUninit::<Layout>::uninit();
let mut buf = [0u8; MAX_DATA_LENGTH];
let mut start = false;
let (debounce_tx, mut debounce_rx) = mpsc::channel::<(usize, SocketAddr)>(3300);
let (network_tx, mut network_rx) = mpsc::channel::<(usize, SocketAddr)>(3300);
loop {
// Listen for events
let debouncer = task::spawn(async move {
let duration = Duration::from_millis(3300);
loop {
match time::timeout(duration, debounce_rx.recv()).await {
Ok(Some((size, peer))) => {
eprintln!("Network activity");
}
Ok(None) => {
if start == true {
eprintln!("Debounce finished");
break;
}
}
Err(_) => {
eprintln!("{:?} since network activity", duration);
}
}
}
});
// Listen for network activity
let server = task::spawn({
// async{
let debounce_tx = debounce_tx.clone();
async move {
while let Some((size, peer)) = network_rx.recv().await {
// Received a new packet
debounce_tx.send((size, peer)).await.expect("Unable to talk to debounce");
eprintln!("Received a packet {} from: {}", size, peer);
let packet_index: u16 = (buf[0] as u16) << 8 | buf[1] as u16;
if start == false { // first bytes of a new file: initialization // TODO: ADD A MUTEX to prevent many initializations
start = true;
let chunks_cnt: u32 = (buf[2] as u32) << 8 | buf[3] as u32;
let n: usize = MAX_DATAGRAM_SIZE << next_power_of_two_exponent(chunks_cnt);
unsafe {
layout.as_mut_ptr().write(Layout::from_size_align_unchecked(n, mem::align_of::<u8>()));
// /!\ data has type `*mut u8` which is not `Send`
data = alloc(layout.assume_init());
peer_addr.as_mut_ptr().write(peer);
}
let a: Vec<u16> = vec![0; chunks_cnt as usize]; //(0..chunks_cnt).map(|x| x as u16).collect(); // create a sorted vector with all the required indexes
missing_indexes = a;
}
missing_indexes[packet_index as usize] = 1;
unsafe {
let dst_ptr = data.offset((packet_index as usize * MAX_CHUNK_SIZE) as isize);
memcpy(dst_ptr, &buf[AG_HEADER], size - AG_HEADER);
};
println!("receiving packet {} from: {}", packet_index, peer);
}
}
});
// Prevent deadlocks
drop(debounce_tx);
match socket.recv_from(&mut buf).await {
Ok((size, src)) => {
network_tx.send((size, src)).await.expect("Unable to talk to network");
}
Err(e) => {
eprintln!("couldn't recieve a datagram: {}", e);
}
}
}
}
#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
let addr = env::args().nth(1).unwrap_or_else(|| "127.0.0.1:8080".to_string());
let socket = UdpSocket::bind(&addr).await?;
println!("Listening on: {}", socket.local_addr()?);
run_server(socket);
Ok(())
}
Since I was converting from synchronous to asynchronous code I know that, potentially, multiple thread would be writing to data, and that is probably why I encounter such error. But I don't know which syntax I could use to "clone" the mut ptr and make it unique for each thread (and same for the buffer).
As suggested by user4815162342 I think the best would be
to make pointer Send by wrapping it in a struct and declaring unsafe impl Send for NewStruct {}.
Any help strongly appreciated!
PS: Full code can be found on my github repository
Short version
Thanks to the comment of user4815162342 I decided to add an implementation for the mut ptr to be able to use it with Send and Sync, which allowed me to solve this part (there are still other issues, but beyond the scope of this question):
pub struct FileBuffer {
data: *mut u8
}
unsafe impl Send for FileBuffer {}
unsafe impl Sync for FileBuffer {}
//let mut data = std::ptr::null_mut(); // ptr for the file bytes
let mut fileBuffer: FileBuffer = FileBuffer { data: std::ptr::null_mut() };
Long version
use std::error::Error;
use std::time::Duration;
use std::env;
use tokio::net::UdpSocket;
use tokio::{sync::mpsc, task, time}; // 1.4.0
use std::alloc::{alloc, Layout};
use std::mem;
use std::mem::MaybeUninit;
use std::net::SocketAddr;
const UDP_HEADER: usize = 8;
const IP_HEADER: usize = 20;
const AG_HEADER: usize = 4;
const MAX_DATA_LENGTH: usize = (64 * 1024 - 1) - UDP_HEADER - IP_HEADER;
const MAX_CHUNK_SIZE: usize = MAX_DATA_LENGTH - AG_HEADER;
const MAX_DATAGRAM_SIZE: usize = 0x10000;
/// A wrapper for [ptr::copy_nonoverlapping] with different argument order (same as original memcpy)
unsafe fn memcpy(dst_ptr: *mut u8, src_ptr: *const u8, len: usize) {
std::ptr::copy_nonoverlapping(src_ptr, dst_ptr, len);
}
// Different from https://doc.rust-lang.org/std/primitive.u32.html#method.next_power_of_two
// Returns the [exponent] from the smallest power of two greater than or equal to n.
const fn next_power_of_two_exponent(n: u32) -> u32 {
return 32 - (n - 1).leading_zeros();
}
pub struct FileBuffer {
data: *mut u8
}
unsafe impl Send for FileBuffer {}
unsafe impl Sync for FileBuffer {}
async fn run_server(socket: UdpSocket) {
let mut missing_indexes: Vec<u16> = Vec::new();
let mut peer_addr = MaybeUninit::<SocketAddr>::uninit();
//let mut data = std::ptr::null_mut(); // ptr for the file bytes
let mut fileBuffer: FileBuffer = FileBuffer { data: std::ptr::null_mut() };
let mut len: usize = 0; // total len of bytes that will be written
let mut layout = MaybeUninit::<Layout>::uninit();
let mut buf = [0u8; MAX_DATA_LENGTH];
let mut start = false;
let (debounce_tx, mut debounce_rx) = mpsc::channel::<(usize, SocketAddr)>(3300);
let (network_tx, mut network_rx) = mpsc::channel::<(usize, SocketAddr)>(3300);
loop {
// Listen for events
let debouncer = task::spawn(async move {
let duration = Duration::from_millis(3300);
loop {
match time::timeout(duration, debounce_rx.recv()).await {
Ok(Some((size, peer))) => {
eprintln!("Network activity");
}
Ok(None) => {
if start == true {
eprintln!("Debounce finished");
break;
}
}
Err(_) => {
eprintln!("{:?} since network activity", duration);
}
}
}
});
// Listen for network activity
let server = task::spawn({
// async{
let debounce_tx = debounce_tx.clone();
async move {
while let Some((size, peer)) = network_rx.recv().await {
// Received a new packet
debounce_tx.send((size, peer)).await.expect("Unable to talk to debounce");
eprintln!("Received a packet {} from: {}", size, peer);
let packet_index: u16 = (buf[0] as u16) << 8 | buf[1] as u16;
if start == false { // first bytes of a new file: initialization // TODO: ADD A MUTEX to prevent many initializations
start = true;
let chunks_cnt: u32 = (buf[2] as u32) << 8 | buf[3] as u32;
let n: usize = MAX_DATAGRAM_SIZE << next_power_of_two_exponent(chunks_cnt);
unsafe {
layout.as_mut_ptr().write(Layout::from_size_align_unchecked(n, mem::align_of::<u8>()));
// /!\ data has type `*mut u8` which is not `Send`
fileBuffer.data = alloc(layout.assume_init());
peer_addr.as_mut_ptr().write(peer);
}
let a: Vec<u16> = vec![0; chunks_cnt as usize]; //(0..chunks_cnt).map(|x| x as u16).collect(); // create a sorted vector with all the required indexes
missing_indexes = a;
}
missing_indexes[packet_index as usize] = 1;
unsafe {
let dst_ptr = fileBuffer.data.offset((packet_index as usize * MAX_CHUNK_SIZE) as isize);
memcpy(dst_ptr, &buf[AG_HEADER], size - AG_HEADER);
};
println!("receiving packet {} from: {}", packet_index, peer);
}
}
});
// Prevent deadlocks
drop(debounce_tx);
match socket.recv_from(&mut buf).await {
Ok((size, src)) => {
network_tx.send((size, src)).await.expect("Unable to talk to network");
}
Err(e) => {
eprintln!("couldn't recieve a datagram: {}", e);
}
}
}
}
#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
let addr = env::args().nth(1).unwrap_or_else(|| "127.0.0.1:8080".to_string());
let socket = UdpSocket::bind(&addr).await?;
println!("Listening on: {}", socket.local_addr()?);
run_server(socket);
Ok(())
}
I'm using this method as part of a WebSocket client implementation to read data from a serial port and send it to the server. I had to wrap the port in Arc<Mutex<_>> because I needed to share it with other methods in order to write to the serial port upon receiving a WebSocket message.
I'm using a 128 byte u8 buffer to store the data; is there any way to make the buffer dynamically-sized? Wrapping in Arc<Mutex<_>> is a must.
extern crate env_logger;
extern crate ws;
use std::thread;
use ws::{listen, CloseCode, Handler, Handshake, Message, Result, Sender};
fn on_open(&mut self, _: Handshake) -> Result<(), ws::Error> {
let port_handle: Arc<Mutex<SystemPort>> = self.port_handle.clone();
let out: Sender = self.out.clone();
thread::spawn(move || {
// read_from_serial(&mut port);
let mut buffer = [0u8; 128];
let mut msg: String;
loop {
let read_result: Result<usize, std::io::Error>;
{
read_result = port_handle
.lock()
.expect("Access port handle")
.read(&mut buffer);
}
if read_result.is_ok() {
msg = buffer_to_string(&buffer);
buffer = [0u8; 128];
println!("Client sending message: '{}'", msg);
out.send(msg).expect("Forward COM message to server");
}
}
});
Ok(())
}
Edit: This is the same code using read_to_string instead of read. The string length is completely dynamic, but the only problem is that read_result is always Err(Custom { kind: TimedOut, error: StringError("Operation timed out") }) here. As a temporary fix, I decided to leave the Result unused and used msg.len() > 0 to test for a new serial message.
extern crate env_logger;
extern crate ws;
use std::thread;
use ws::{listen, CloseCode, Handler, Handshake, Message, Result, Sender};
fn on_open(&mut self, _: Handshake) -> Result<(), ws::Error> {
let port_handle = self.port_handle.clone();
let out = self.out.clone();
thread::spawn(move || {
// read_from_serial(&mut port);
let mut buffer = String::new();
let mut msg;
loop {
{
port_handle
.lock()
.expect("Access port handle")
.read_to_string(&mut buffer);
msg = format!("{}", buffer);
}
if msg.len() > 0 {
buffer.clear();
println!("Client sending message: '{}'", msg);
out.send(msg).expect("Forward COM message to server");
}
}
});
Ok(())
}
Edit: Ive included the following minimal example and removed all other unnecessary code.
extern crate env_logger;
extern crate serial;
use serial::prelude::*;
use std::io::Read;
use std::thread;
use std::time::Duration;
fn main() {
let client = thread::spawn(move || {
// setting up serial port
let mut port = serial::open("/dev/tnt0").expect("Open serial port");
let new_timeout = Duration::from_millis(1000);
port.set_timeout(new_timeout).expect("Set port timeout");
// setting up buffer
let mut buffer = String::new();
// looping to continuously read serial data
loop {
// unused Result returned by read_to_string
// because when used, it always is an Err variant
// `Custom { kind: TimedOut, error: StringError("Operation timed out") }`
port.read_to_string(&mut buffer);
// using string length to test for valid data instead of using Ok/Err
if buffer.len() > 0 {
println!("Client sending message: '{}'", buffer);
// clearing buffer for next iteration
buffer.clear();
}
}
});
// Wait for the worker threads to finish what they are doing
let _ = client.join();
println!("All done.")
}
With Rust 1.9, I'd like to read from a mpsc::channel or timeout. Is there a clear idiom to make this work? I've seen the unstable approach described in mpsc::Select but this Github discussion suggests it is not a robust approach. Is there a better-recommended way for me to achieve receive-or-timeout semantics?
Rust 1.12 introduced Receiver::recv_timeout:
use std::sync::mpsc::channel;
use std::time::Duration;
fn main() {
let (.., rx) = channel::<bool>();
let timeout = Duration::new(3, 0);
println!("start recv");
let _ = rx.recv_timeout(timeout);
println!("done!");
}
I don't know how you'd do it with the standard library channels, but the chan crate provides a chan_select! macro:
#[macro_use]
extern crate chan;
use std::time::Duration;
fn main() {
let (_never_sends, never_receives) = chan::sync::<bool>(1);
let timeout = chan::after(Duration::from_millis(50));
chan_select! {
timeout.recv() => {
println!("timed out!");
},
never_receives.recv() => {
println!("Shouldn't have a value!");
},
}
}
I was able to get something working using the standard lib.
use std::sync::mpsc::channel;
use std::thread;
use std::time::{Duration, Instant};
use std::sync::mpsc::TryRecvError;
fn main() {
let (send, recv) = channel();
thread::spawn(move || {
send.send("Hello world!").unwrap();
thread::sleep(Duration::from_secs(1)); // block for two seconds
send.send("Delayed").unwrap();
});
println!("{}", recv.recv().unwrap()); // Received immediately
println!("Waiting...");
let mut resolved: bool = false;
let mut result: Result<&str, TryRecvError> = Ok("Null");
let now = Instant::now();
let timeout: u64= 2;
while !resolved {
result = recv.try_recv();
resolved = !result.is_err();
if now.elapsed().as_secs() as u64 > timeout {
break;
}
}
if result.is_ok(){
println!("Results: {:?}", result.unwrap());
}
println!("Time elapsed: {}", now.elapsed().as_secs());
println!("Resolved: {}", resolved.to_string());
}
This will spin for timeout seconds and will result in either the received value or an Err Result.
Because Rust does not have have the built-in ability to read from a file in a non-blocking manner, I have to spawn a thread which reads the file /dev/input/fs0 in order to get joystick events. Suppose the joystick is unused (nothing to read), so the reading thread is blocked while reading from the file.
Is there a way for the main thread to force the blocking read of the reading thread to resume, so the reading thread may exit cleanly?
In other languages, I would simply close the file in the main thread. This would force the blocking read to resume. But I have not found a way to do so in Rust, because reading requires a mutable reference to the file.
The idea is to call File::read only when there is available data. If there is no available data, we check a flag to see if the main thread requested to stop. If not, wait and try again.
Here is an example using nonblock crate:
extern crate nonblock;
use std::fs::File;
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;
use nonblock::NonBlockingReader;
fn main() {
let f = File::open("/dev/stdin").expect("open failed");
let mut reader = NonBlockingReader::from_fd(f).expect("from_fd failed");
let exit = Arc::new(Mutex::new(false));
let texit = exit.clone();
println!("start reading, type something and enter");
thread::spawn(move || {
let mut buf: Vec<u8> = Vec::new();
while !*texit.lock().unwrap() {
let s = reader.read_available(&mut buf).expect("io error");
if s == 0 {
if reader.is_eof() {
println!("eof");
break;
}
} else {
println!("read {:?}", buf);
buf.clear();
}
thread::sleep(Duration::from_millis(200));
}
println!("stop reading");
});
thread::sleep(Duration::from_secs(5));
println!("closing file");
*exit.lock().unwrap() = true;
thread::sleep(Duration::from_secs(2));
println!("\"stop reading\" was printed before the main exit!");
}
fn read_async<F>(file: File, fun: F) -> thread::JoinHandle<()>
where F: Send + 'static + Fn(&Vec<u8>)
{
let mut reader = NonBlockingReader::from_fd(file).expect("from_fd failed");
let mut buf: Vec<u8> = Vec::new();
thread::spawn(move || {
loop {
let s = reader.read_available(&mut buf).expect("io error");
if s == 0 {
if reader.is_eof() {
break;
}
} else {
fun(&buf);
buf.clear();
}
thread::sleep(Duration::from_millis(100));
}
})
}
Here is an example using poll binding of nix crate. The function poll waits (with timeout) for specific events:
extern crate nix;
use std::io::Read;
use std::os::unix::io::AsRawFd;
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;
use nix::poll;
fn main() {
let mut f = std::fs::File::open("/dev/stdin").expect("open failed");
let mut pfd = poll::PollFd {
fd: f.as_raw_fd(),
events: poll::POLLIN, // is there input data?
revents: poll::EventFlags::empty(),
};
let exit = Arc::new(Mutex::new(false));
let texit = exit.clone();
println!("start reading, type something and enter");
thread::spawn(move || {
let timeout = 100; // millisecs
let mut s = unsafe { std::slice::from_raw_parts_mut(&mut pfd, 1) };
let mut buffer = [0u8; 10];
loop {
if poll::poll(&mut s, timeout).expect("poll failed") != 0 {
let s = f.read(&mut buffer).expect("read failed");
println!("read {:?}", &buffer[..s]);
}
if *texit.lock().unwrap() {
break;
}
}
println!("stop reading");
});
thread::sleep(Duration::from_secs(5));
println!("closing file");
*exit.lock().unwrap() = true;
thread::sleep(Duration::from_secs(2));
println!("\"stop reading\" was printed before the main exit!");
}