Rust's borrow-checker, for loop and structs methods - rust

I'm struggling to find a solution for the error in the code below:
struct Cell {
line: u8,
column: u8,
square: u8,
value: u8,
}
struct Sudoku {
cells: Vec<Cell>,
}
impl Sudoku {
fn possible_values(&self, cell: &Cell) -> Vec<u8> {
...
}
fn solve(&mut self) {
for cell in self.cells.iter_mut() {
if cell.value == 0 {
let possible_values = self.possible_values(&cell);
match possible_values.len() {
0 => panic!("La résolution semble impossible"),
1 => {
cell.value = possible_values[0];
println!("In cell {:?} I would write {}", cell, possible_values[0]);
}
_ => (),
}
}
}
}
}
The error is:
error[E0502]: cannot borrow `*self` as immutable because it is also borrowed as mutable
for mut cell in self.cells.iter_mut() (on self: mutable borrow occurs here and mutable borrow later used here
let possible_values = self.possible_values(&cell); (on self: immutable borrow occurs here )
The function possible_values borrows self (not mutable).
The for loop needs an iter_mut() because I want to change cell.value, but I also need to use the possible_values function to get the value I want to assign to cell.value.
How can I manage do do that?
Here is the code.

I think you should remove the mut from for mut case.
An example from the docs:
// Then, we iterate over it and increment each element value:
for element in slice.iter_mut() {
*element += 1;
}

You can get around the borrow checker by identifying the cell by its index instead of holding a reference.
for i in 0..81 {
if self.cells[i].value == 0 {
let possible_values = self.possible_values(&self.cells[i]);
match possible_values.len() {
0 => panic!("La résolution semble impossible"),
1 => {
self.cells[i].value = possible_values[0];
println!(
"In cell {:?} I would write {}",
self.cells[i], possible_values[0]
);
}
_ => (),
}
}
}
playground

Related

Borrow inside a loop

I'm trying to learn Rust after many years of C++. I have a situation where the compiler is complaining about a borrow, and it doesn't seem to matter whether it is mutable or immutable. I don't seem to be able to use self as a parameter inside a loop that start with: for item in self.func.drain(..).I've tried calling appropriate() as a function:
Self::appropriate(&self,&item,index)
and I have tried it as a method:
self.appropriate(&item,index)
but I get the same message in either case:
The function or method appropriate() is intended imply examine the relationship among its parameters and return a bool without modifying anything. How can I call either a function or method on self without violating borrowing rules?This program is a learning exercise from exercism.org and doesn't include a main() so it won't run but should almost compile except for the error in question. Here's the code I have:
use std::collections::HashMap;
pub type Value = i32;
pub type Result = std::result::Result<(), Error>;
pub struct Forth {
v: Vec<Value>,
f: HashMap<String,usize>,
s: Vec<Vec<String>>,
func: Vec<String>
}
#[derive(Debug, PartialEq)]
pub enum Error {
DivisionByZero,
StackUnderflow,
UnknownWord,
InvalidWord,
}
impl Forth {
pub fn new() -> Forth {
let mut temp: Vec<Vec<String>> = Vec::new();
temp.push(Vec::new());
Forth{v: Vec::<Value>::new(), f: HashMap::new(), s: temp, func: Vec::new()}
}
pub fn stack(&self) -> &[Value] {
&self.v
}
pub fn eval(&mut self, input: &str) -> Result {
self.v.clear();
self.s[0].clear();
let mut count = 0;
{
let temp: Vec<&str> = input.split(' ').collect();
let n = temp.len() as i32;
for x in 0..n as usize {
self.s[0].push(String::from(temp[x]));
}
}
let mut collecting = false;
let mut xlist: Vec<(usize,usize)> = Vec::new();
let mut sx: usize = 0;
let mut z: i32 = -1;
let mut x: usize;
let mut n: usize = self.s[0].len();
loop {
count += 1;
if count > 20 {break;}
z += 1;
x = z as usize;
if x >= n {break;}
z = x as i32;
let word = &self.s[sx][x];
if word == ";" {
if collecting {
collecting = false;
let index: usize = self.s.len();
self.s.push(Vec::<String>::new());
for item in self.func.drain(..) {
if self.s[index].len() > 0 &&
Self::appropriate(&self,&item,index)
{
let sx = *self.f.get(&self.s[index][0]).unwrap();
let n = self.s[sx].len();
for x in 1..n as usize {
let symbol = self.s[sx][x].clone();
self.s[index].push(symbol);
}
}
else {
self.s[index].push(item);
}
}
self.f.insert(self.s[index][0].clone(), index);
self.func.clear();
continue;
}
if 0 < xlist.len() {
(x, n) = xlist.pop().unwrap();
continue;
}
return Err(Error::InvalidWord);
}
if collecting {
self.func.push(String::from(word));
continue;
}
if Self::is_op(word) {
if self.v.len() < 2 {
return Err(Error::StackUnderflow);
}
let b = self.v.pop().unwrap();
let a = self.v.pop().unwrap();
let c = match word.as_str() {
"+" => a + b,
"-" => a - b,
"*" => a * b,
"/" => {if b == 0 {return Err(Error::DivisionByZero);} a / b},
_ => 0
};
self.v.push(c);
continue;
}
match word.parse::<Value>() {
Ok(value) => { self.v.push(value); continue;},
_ => {}
}
if word == ":" {
collecting = true;
self.func.clear();
continue;
}
if word == "drop" {
if self.v.len() < 1 {
return Err(Error::StackUnderflow);
}
self.v.pop();
continue;
}
if word == "dup" {
if self.v.len() < 1 {
return Err(Error::StackUnderflow);
}
let temp = self.v[self.v.len() - 1];
self.v.push(temp);
continue;
}
if !self.f.contains_key(word) {
return Err(Error::UnknownWord);
}
xlist.push((sx,n));
sx = *self.f.get(word).unwrap();
n = self.s[sx].len();
z = 0;
}
Ok(())
}
fn is_op(input: &str) -> bool {
match input {"+"|"-"|"*"|"/" => true, _ => false}
}
fn appropriate(&self, item:&str, index:usize) -> bool
{
false
}
fn prev_def_is_short(&self, index: usize) -> bool {
if index >= self.s.len() {
false
}
else {
if let Some(&sx) = self.f.get(&self.func[0]) {
self.s[sx].len() == 2
}
else {
false
}
}
}
}
The error message relates to the call to appropriate(). I haven't even written the body of that function yet; I'd like to get the parameters right first. The compiler's complaint is:
As a subroutine call
error[E0502]: cannot borrow `self` as immutable because it is also borrowed as mutable
--> src/lib.rs:85:47
|
81 | for item in self.func.drain(..) {
| -------------------
| |
| mutable borrow occurs here
| mutable borrow later used here
...
85 | Self::appropriate(&self,&item,index)
| ^^^^^ immutable borrow occurs here
For more information about this error, try `rustc --explain E0502`.
as a method call
error[E0502]: cannot borrow `*self` as immutable because it is also borrowed as mutable
--> src/lib.rs:85:29
|
81 | for item in self.func.drain(..) {
| -------------------
| |
| mutable borrow occurs here
| mutable borrow later used here
...
85 | self.appropriate(&item,index)
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ immutable borrow occurs here
For more information about this error, try `rustc --explain E0502`.
Is there any canonical way to deal with this situation?
The problem is that self.func.drain() will consume the elements contained in self.func, thus an exclusive (&mut) access is needed on self.func for the entire for loop.
If during the iteration you need to pass a reference to self globally, then its func member is potentially accessible while the loop holds an exclusive access to it: Rust forbids that.
Since you use drain() in order to consume all the elements inside self.func, I suggest you swap this vector with an empty one just before the loop, then iterate on this other vector that is not anymore part of self.
No copy of the content of the vector is involved here; swap() only deals with pointers.
Here is an over-simplified version of your code, adapted consequently.
struct Forth {
func: Vec<String>,
}
impl Forth {
fn eval(&mut self) {
/*
for item in self.func.drain(..) {
self.appropriate(&self);
}
*/
let mut func = Vec::new();
std::mem::swap(&mut self.func, &mut func);
for item in func.drain(..) {
let b = self.appropriate();
println!("{:?} {:?}", item, b);
}
}
fn appropriate(&self) -> bool {
false
}
}
fn main() {
let mut f = Forth {
func: vec!["aaa".into(), "bbb".into()],
};
f.eval();
}

Hashmap multiple mutable borrow issue after reference drop

I am trying to pass around a HashMap which stores values through a set of nested enums/structs. The problem of multiple mutability happens during iteration, even all references should be dropped.
The general idea is to have a vector of values, iterate through them and simplify them, keeping track of them within the HashMap. There are two stages of simplification.
The general flow looks something like
run(Vec<ComplexVal>)
-for each val->
val.fix_complex(holder)
-for each `smp` SimpleVal in val->
basicval = Simplifier::step(smp, holder)
holder.insert("name", basicval)
But the problem is that the holder is borrowed mutably in each stage, and there isn't supposed to be any reference from the ComplexVal to the holder and since the borrowchecker doesn't like multiple borrows, it fails.
Full playground snippet: here
It happens in this snippet:
pub fn run(&mut self, mut vals: Vec<ComplexVal>) {
let mut holder = Holder{hold:HashMap::new()};
// .. setup holder code omitted
let len = vals.len();
for _ in 0..len {
let mut val = vals.remove(0); // remove from vec, should drop after running
println!("Running {:?}", val);
match val {
ComplexVal::Cmplx1(mut c) => {
c.fix_complex(&mut holder)
},
//... more cases of different types of values omitted for simplicity
}
// val *should* be dropped here, and therefore the mutable borrow of holder?
}
println!("Holder: {:?}", holder);
}
}
The only thing I can think of is that it somehow is related to the BasicVal::Ref(&BasicVal) value when created.
I need to return a reference of type &BasicVal so I can't use a regular fn() -> &BasicVal as the reference would be dangling, so I pass a ret value which is to be modified and used as the storage for the return value.
I have also tried just returning the enum BasicVal::Ref(&BasicVal), but run into the same mutability issues.
The example below is a much more simple version which (sort of) demonstrates the same error, just thought I'd include this context in case someone has another idea on how to implement this which wouldn't have these issues
Code (edited)
Updated playground link
Edit: I made a mistake in not needing the lifetimes of both holder and ret to explicitly be the same, so I have made an updated example for it
use std::borrow::BorrowMut;
///////////////////////////////
use std::cell::{RefCell, RefMut};
use std::collections::HashMap;
#[derive(Debug)]
enum BasicVal<'a> {
Ref(&'a BasicVal<'a>),
Val1(BasicStruct),
}
#[derive(Debug)]
struct Holder<'b> {
hold: HashMap<String, RefCell<BasicVal<'b>>>,
}
#[derive(Debug)]
struct BasicStruct {
val: i32,
}
impl<'a> BasicVal<'a> {
pub fn empty() -> Self { BasicVal::Val1(BasicStruct { val: 0 }) }
}
// must match sig of modify_val_ref
fn modify_val<'f>(holder: &'f mut Holder<'f>, mut ret: RefMut<BasicVal<'f>>) {
*ret = BasicVal::Val1(BasicStruct { val: 5 });
}
// must match sig of modify_val
fn modify_val_ref<'f>(holder: &'f mut Holder<'f>, mut ret: RefMut<BasicVal<'f>>) {
ret = holder.hold.get("reference_val").unwrap().borrow_mut();
}
fn do_modify<'f>(holder: &'f mut Holder<'f>) {
let mut v = RefCell::new(BasicVal::empty());
println!("Original {:?}", v);
modify_val(holder, v.borrow_mut());
holder.hold.insert("Data".to_string(), v);
println!("Modified {:?}", holder.hold.get("Data"));
}
pub fn test_dropborrow() {
let mut holder = Holder { hold: HashMap::new() };
holder.hold.insert(
"reference_val".to_string(),
RefCell::new(BasicVal::Val1(BasicStruct { val: 8 })),
);
do_modify(&mut holder);
}
pub fn main() {
test_dropborrow();
}
Edit: Using just the holder for a temp return value gives me a multiple mutable borrow issue, so that workaround doesn't work. I have also tried it with a RefCell with the same issue.
fn modify_val<'f>(holder: &'f mut Holder<'f>) {
holder.hold.insert("$return".to_string(), BasicVal::Val1(BasicStruct{val: 5}));
}
fn do_modify<'f>(holder: &'f mut Holder<'f>) {
modify_val(holder);
let mut v = holder.hold.remove("$return").unwrap();
holder.hold.insert("Data".to_string(), v);
println!("Modified {:?}", v);
}
Error:
935 | fn do_modify<'f>(holder: &'f mut Holder<'f>) {
| -- lifetime `'f` defined here
936 |
937 | modify_val(holder);
| ------------------
| | |
| | first mutable borrow occurs here
| argument requires that `*holder` is borrowed for `'f`
938 | let mut v = holder.hold.remove("$return").unwrap();
| ^^^^^^^^^^^ second mutable borrow occurs here
Any help is greatly appreciated!!!
Figured it out, essentially the BasicVal<'a> was causing Holder to mutably borrow itself in successive iterations of the loop, so removing the lifetime was pretty much the only solution

What is the origin of the error "cannot move out of borrowed content"?

I've never understood why I have received the Rust error "cannot move out of borrowed content".
use std::cell::RefCell;
use std::collections::VecDeque;
use std::rc::Rc;
use std::vec::Vec;
pub struct user_type {
pub name: String,
pub ilist: Vec<i32>,
pub user_type_list: VecDeque<Option<Rc<RefCell<user_type>>>>,
pub parent: Option<Rc<RefCell<user_type>>>,
}
impl user_type {
pub fn new(name: String) -> Self {
user_type {
name: name.clone(),
ilist: Vec::new(),
user_type_list: VecDeque::new(),
parent: Option::None,
}
}
pub fn to_string(&self) -> String {
let mut result: String = String::new();
result += "name is ";
result += &self.name;
let n = self.user_type_list.len();
for iter in &self.user_type_list {
match iter {
Some(ref x) => {
let temp = x.into_inner();
let temp2 = temp.to_string();
result += &temp2[..];
}
None => panic!("to_string"),
}
result += "\n";
}
result
}
}
The full error message is:
error[E0507]: cannot move out of borrowed content
--> src/main.rs:34:32
|
34 | let temp = x.into_inner();
| ^ cannot move out of borrowed content
What is the origin of this kind of error?
Look carefully at this code:
for iter in &self.user_type_list {
match iter {
Some(ref x) => {
let temp = x.into_inner();
let temp2 = temp.to_string();
result += &temp2[..];
}
None => panic!("to_string"),
}
result += "\n";
}
Here, you are iterating &self.user_type_list so the type of iter is actually a reference to the contained value: &Option<Rc<RefCell<user_type>>>. That is nice, because you do not want to take ownership of the container or its values.
Then you match iter to Some(ref x). Older compiler versions would fail because you are matching a reference to a non-reference, but new compilers will do as if you are matching a Option<&T> instead of a &Option<T>, if needed. That is handy, and means that you can write just Some(x) => and x will be of type &Rc<RefCell<user_type>> instead of &&Rc<..> (not that it really matters, automatic dereferencing will make those equivalent).
Now you are calling x.into_inner() with a &Rc<RefCell<..>> and that will never work. It looks like you want to get the RefCell into temp that is not needed, Rc implements Deref so you get that for free. Instead the compiler thinks you are calling RefCell::into_inner(self) -> T, but this function consumes the self to get to the contained value. And you do not own it, you just borrowed it. That is what the error message means: you are trying to consume (move out) and object you do not own (borrowd).
What you really want is just to borrow the user_type enough to call to_string():
Some(x) => {
let temp = x.borrow().to_string();
result += &temp;
}

Iterating through a recursive structure using mutable references and returning the last valid reference

I'm trying to recurse down a structure of nodes, modifying them, and then returning the last Node that I get to. I solved the problems with mutable references in the loop using an example in the non-lexical lifetimes RFC. If I try to return the mutable reference to the last Node, I get a use of moved value error:
#[derive(Debug)]
struct Node {
children: Vec<Node>,
}
impl Node {
fn new(children: Vec<Self>) -> Self {
Self { children }
}
fn get_last(&mut self) -> Option<&mut Node> {
self.children.last_mut()
}
}
fn main() {
let mut root = Node::new(vec![Node::new(vec![])]);
let current = &mut root;
println!("Final: {:?}", get_last(current));
}
fn get_last(mut current: &mut Node) -> &mut Node {
loop {
let temp = current;
println!("{:?}", temp);
match temp.get_last() {
Some(child) => { current = child },
None => break,
}
}
current
}
Gives this error
error[E0382]: use of moved value: `*current`
--> test.rs:51:5
|
40 | let temp = current;
| ---- value moved here
...
51 | current
| ^^^^^^^ value used here after move
|
= note: move occurs because `current` has type `&mut Node`, which does not implement the `Copy` trait
If I return the temporary value instead of breaking, I get the error cannot borrow as mutable more than once.
fn get_last(mut current: &mut Node) -> &mut Node {
loop {
let temp = current;
println!("{:?}", temp);
match temp.get_last() {
Some(child) => { current = child },
None => return temp,
}
}
}
error[E0499]: cannot borrow `*temp` as mutable more than once at a time
--> test.rs:47:28
|
43 | match temp.get_last() {
| ---- first mutable borrow occurs here
...
47 | None => return temp,
| ^^^^ second mutable borrow occurs here
48 | }
49 | }
| - first borrow ends here
How can I iterate through the structure with mutable references and return the last Node? I've searched, but I haven't found any solutions for this specific problem.
I can't use Obtaining a mutable reference by iterating a recursive structure because it gives me a borrowing more than once error:
fn get_last(mut current: &mut Node) -> &mut Node {
loop {
let temp = current;
println!("{:?}", temp);
match temp.get_last() {
Some(child) => current = child,
None => current = temp,
}
}
current
}
This is indeed different from Cannot obtain a mutable reference when iterating a recursive structure: cannot borrow as mutable more than once at a time. If we look at the answer there, modified a bit, we can see that it matches on a value and is able to return the value that was matched on in the terminal case. That is, the return value is an Option:
fn back(&mut self) -> &mut Option<Box<Node>> {
let mut anchor = &mut self.root;
loop {
match {anchor} {
&mut Some(ref mut node) => anchor = &mut node.next,
other => return other, // transferred ownership to here
}
}
}
Your case is complicated by two aspects:
The lack of non-lexical lifetimes.
The fact that you want to take a mutable reference and "give it up" in one case (there are children) and not in the other (no children). This is conceptually the same as this:
fn maybe_identity<T>(_: T) -> Option<T> { None }
fn main() {
let name = String::from("vivian");
match maybe_identity(name) {
Some(x) => println!("{}", x),
None => println!("{}", name),
}
}
The compiler cannot tell that the None case could (very theoretically) continue to use name.
The straight-forward solution is to encode this "get it back" action explicitly. We create an enum that returns the &mut self in the case of no children, a helper method that returns that enum, and rewrite the primary method to use the helper:
enum LastOrNot<'a> {
Last(&'a mut Node),
NotLast(&'a mut Node),
}
impl Node {
fn get_last_or_self(&mut self) -> LastOrNot<'_> {
match self.children.is_empty() {
false => LastOrNot::Last(self.children.last_mut().unwrap()),
true => LastOrNot::NotLast(self),
}
}
fn get_last(mut current: &mut Node) -> &mut Node {
loop {
match { current }.get_last_or_self() {
LastOrNot::Last(child) => current = child,
LastOrNot::NotLast(end) => return end,
}
}
}
}
Note that we are using all of the techniques exposed in both Returning a reference from a HashMap or Vec causes a borrow to last beyond the scope it's in? and Cannot obtain a mutable reference when iterating a recursive structure: cannot borrow as mutable more than once at a time.
With an in-progress reimplementation of NLL, we can simplify get_last_or_self a bit to avoid the boolean:
fn get_last_or_self(&mut self) -> LastOrNot<'_> {
match self.children.last_mut() {
Some(l) => LastOrNot::Last(l),
None => LastOrNot::NotLast(self),
}
}
The final version of Polonius should allow reducing the entire problem to a very simple form:
fn get_last(mut current: &mut Node) -> &mut Node {
while let Some(child) = current.get_last() {
current = child;
}
current
}
See also:
Returning a reference from a HashMap or Vec causes a borrow to last beyond the scope it's in?
Cannot obtain a mutable reference when iterating a recursive structure: cannot borrow as mutable more than once at a time

Rust lifetime issue in loop

How to get this example to compile without array copying or multiple calls to b() per iteration — b() has to perform some expensive parsing?
This is not the full code that I wrote, but it illustrates the problem I had. Here, Test is attempting to perform some kind of streaming parsing work. c() is the parsing function, it returns Some when parsing was successful. b() is a function that attempts to read more data from the stream when c() can not parse using the available data yet. The returned value is a slice into the self.v containing the parsed range.
struct Test {
v: [u8; 10],
index: u8,
}
impl Test {
fn b(&mut self) {
self.index = 1
}
fn c(i: &[u8]) -> Option<&[u8]> {
Some(i)
}
fn a(&mut self) -> &[u8] {
loop {
self.b();
match Test::c(&self.v) {
Some(r) => return r,
_ => continue,
}
}
}
}
fn main() {
let mut q = Test {
v: [0; 10],
index: 0,
};
q.a();
}
When compiling, it produces the following borrow checker error:
error[E0502]: cannot borrow `*self` as mutable because `self.v` is also
borrowed as immutable
--> <anon>:17:13
|
17 | self.b();
| ^^^^ mutable borrow occurs here
18 |
19 | match Test::c(&self.v) {
| ------ immutable borrow occurs here
...
24 | }
| - immutable borrow ends here
If I change a() to:
fn a(&mut self) -> Option<&[u8]> {
loop {
self.b();
if let None = Test::c(&self.v) {
continue
}
if let Some(r) = Test::c(&self.v) {
return Some(r);
} else {
unreachable!();
}
}
}
Then it runs, but with the obvious drawback of calling the parsing function c() twice.
I kind of understand that changing self while the return value depends on it is unsafe, however, I do not understand why is the immutable borrow for self.v is still alive in the next iteration, when we attempted to call b() again.
Right now "Rustc can't "deal" with conditional borrowing returns". See this comment from Gankro on issue 21906.
It can't assign a correct lifetime to the borrow if only one execution path terminates the loop.
I can suggest this workaround, but I'm not sure it is optimal:
fn c(i: &[u8]) -> Option<(usize, usize)> {
Some((0, i.len()))
}
fn a(&mut self) -> &[u8] {
let parse_result;
loop {
self.b();
match Test::c(&self.v) {
Some(r) => {
parse_result = r;
break;
}
_ => {}
}
}
let (start, end) = parse_result;
&self.v[start..end]
}
You can construct result of parsing using array indexes and convert them into references outside of the loop.
Another option is to resort to unsafe to decouple lifetimes. I am not an expert in safe use of unsafe, so pay attention to comments of others.
fn a(&mut self) -> &[u8] {
loop {
self.b();
match Test::c(&self.v) {
Some(r) => return unsafe{
// should be safe. It decouples lifetime of
// &self.v and lifetime of returned value,
// while lifetime of returned value still
// cannot outlive self
::std::slice::from_raw_parts(r.as_ptr(), r.len())
},
_ => continue,
}
}
}

Resources