Reset parameters of a neural network in pytorch - python-3.x

I have a neural network with the following structure:
class myNetwork(nn.Module):
def __init__(self):
super(myNetwork, self).__init__()
self.bigru = nn.GRU(input_size=2, hidden_size=100, batch_first=True, bidirectional=True)
self.fc1 = nn.Linear(200, 32)
torch.nn.init.xavier_uniform_(self.fc1.weight)
self.fc2 = nn.Linear(32, 2)
torch.nn.init.xavier_uniform_(self.fc2.weight)
I need to reinstate the model to an unlearned state by resetting the parameters of the neural network. I can do so for nn.Linear layers by using the method below:
def reset_weights(self):
torch.nn.init.xavier_uniform_(self.fc1.weight)
torch.nn.init.xavier_uniform_(self.fc2.weight)
But, to reset the weight of the nn.GRU layer, I could not find any such snippet.
My question is how does one reset the nn.GRU layer? Any other way of resetting the network is also fine. Any help is appreciated.

You can use reset_parameters method on the layer. As given here
for layer in model.children():
if hasattr(layer, 'reset_parameters'):
layer.reset_parameters()
Or Another way would be saving the model first and then reload the module state. Using torch.save and torch.load see docs for more Or Saving and Loading Models

Here is the code with an example that runs:
def lp_norm(mdl: nn.Module, p: int = 2) -> Tensor:
lp_norms = [w.norm(p) for name, w in mdl.named_parameters()]
return sum(lp_norms)
def reset_all_weights(model: nn.Module) -> None:
"""
refs:
- https://discuss.pytorch.org/t/how-to-re-set-alll-parameters-in-a-network/20819/6
- https://stackoverflow.com/questions/63627997/reset-parameters-of-a-neural-network-in-pytorch
- https://pytorch.org/docs/stable/generated/torch.nn.Module.html
"""
#torch.no_grad()
def weight_reset(m: nn.Module):
# - check if the current module has reset_parameters & if it's callabed called it on m
reset_parameters = getattr(m, "reset_parameters", None)
if callable(reset_parameters):
m.reset_parameters()
# Applies fn recursively to every submodule see: https://pytorch.org/docs/stable/generated/torch.nn.Module.html
model.apply(fn=weight_reset)
def reset_all_linear_layer_weights(model: nn.Module) -> nn.Module:
"""
Resets all weights recursively for linear layers.
ref:
- https://pytorch.org/docs/stable/generated/torch.nn.Module.html
"""
#torch.no_grad()
def init_weights(m):
if type(m) == nn.Linear:
m.weight.fill_(1.0)
# Applies fn recursively to every submodule see: https://pytorch.org/docs/stable/generated/torch.nn.Module.html
model.apply(init_weights)
def reset_all_weights_with_specific_layer_type(model: nn.Module, modules_type2reset) -> nn.Module:
"""
Resets all weights recursively for linear layers.
ref:
- https://pytorch.org/docs/stable/generated/torch.nn.Module.html
"""
#torch.no_grad()
def init_weights(m):
if type(m) == modules_type2reset:
# if type(m) == torch.nn.BatchNorm2d:
# m.weight.fill_(1.0)
m.reset_parameters()
# Applies fn recursively to every submodule see: https://pytorch.org/docs/stable/generated/torch.nn.Module.html
model.apply(init_weights)
# -- tests
def reset_params_test():
import torchvision.models as models
from uutils.torch_uu import lp_norm
resnet18 = models.resnet18(pretrained=True)
resnet18_random = models.resnet18(pretrained=False)
print(f'{lp_norm(resnet18)=}')
print(f'{lp_norm(resnet18_random)=}')
print(f'{lp_norm(resnet18)=}')
reset_all_weights(resnet18)
print(f'{lp_norm(resnet18)=}')
if __name__ == '__main__':
reset_params_test()
print('Done! \a\n')
output:
lp_norm(resnet18)=tensor(517.5472, grad_fn=<AddBackward0>)
lp_norm(resnet18_random)=tensor(668.3687, grad_fn=<AddBackward0>)
lp_norm(resnet18)=tensor(517.5472, grad_fn=<AddBackward0>)
lp_norm(resnet18)=tensor(476.0836, grad_fn=<AddBackward0>)
Done!
I am assuming this works because I calculated the norm twice for the pre-trained net and it was the same both times before calling reset.
Though I was unhappy it wasn't closer to the norm of the random net I must admit but I think this is good enough.
same: https://discuss.pytorch.org/t/how-to-re-set-alll-parameters-in-a-network/20819/11

New to pytorch, I wonder if this could be a solution :)
Suppose Model inherents from torch.nn.module,
to reset it to zeros:
dic = Model.state_dict()
for k in dic:
dic[k] *= 0
Model.load_state_dict(dic)
del(dic)
to reset it randomly
dic = Model.state_dict()
for k in dic:
dic[k] = torch.randn(dic[k].size())
Model.load_state_dict(dic)
del(dic)

Related

Pytorch netwrok with variable number of hidden layers

I want to create a class that creates a simple network with X fully connected layers, where X is an input given by the user. I tried this using the setattr/getattr but for some reason is not working.
class MLP(nn.Module):
def __init__(self,in_size, out_size,n_layers, hidden_size):
super(MLP,self).__init__()
self.n_layers=n_layers
for i in range(n_layers):
if i==0:
layer_in_size = in_size
else:
layer_in_size = hidden_size
if i==(n_layers-1):
layer_out_size = out_size
else:
layer_out_size = hidden_size
setattr(self,'dense_{}'.format(i), nn.Linear(layer_in_size,layer_out_size))
def forward(self,x):
out = x
for i in range(self.n_layers):
if i==(self.n_layers-1):
out = getattr(self,'dense_{}'.format(i),out)
else:
out = F.relu(getattr(self,'dense_{}'.format(i),out))
return out
This is the error im getting when trying a forward pass with the net:
enter image description here
Some insights of what's the issue will be helpful.
This seems like a problem with forward implementation with the mod2 function. Try the pytorch functions (torch.fmod and torch.remainder) or if you don't need the backprop capabilities try to do .detach() before the mod2 function.

Custom layer from keras to pytorch

Coming from TensorFlow background, I am trying to convert a snippet of code of the custom layer from Keras to PyTorch.
The custom layer in Keras looks like this:
class Attention_module(tf.keras.layers.Layer):
def __init__(self, class_num):
super(Attention_module,self).__init__(class_num)
self.class_num = class_num
self.Ws = None
def build(self, input_shape):
embedding_length = int(input_shape[2])
self.Ws = self.add_weight(shape=(self.class_num, embedding_length),
initializer=tf.keras.initializers.get('glorot_uniform'), trainable=True)
super(Attention_module, self).build(input_shape)
def call(self, inputs):
sentence_trans = tf.transpose(inputs, [0, 2, 1])
at = tf.matmul(self.Ws, sentence_trans)
at = tf.math.tanh(at)
at = K.exp(at - K.max(at, axis=-1, keepdims=True))
at = at / K.sum(at, axis=-1, keepdims=True)
v = K.batch_dot(at, inputs)
return v
I want to implement the same in the torch; I have already done the forward pass block but am confused about how to do the embedding and weight initialization the same as the above layer in PyTorch?
class Attention_module(torch.nn.Module):
def __init__(self, class_num):
# how to initialize weight with same as above keras layer?
def forward(self, inputs):
sentence_trans = inputs.permute(0, 2, 1)
at = torch.mm(self.Ws, sentence_trans)
at = torch.nn.Tanh(at)
at = torch.exp(at - torch.max(torch.Tensor(at), dim=-1, keepdims=True).values)
at = at / torch.sum(at, dim = -1, keepdims=True)
v = torch.einsum('ijk,ikl->ijl', at, inputs)
return v
Thank you!
class Attention_module(torch.nn.Module):
def __init__(self, class_num, input_shape):
super().__init__()
self.class_num = class_num
embedding_length = int(input_shape[2])
self.Ws = torch.nn.Embedding(num_embeddings=class_num,
embedding_dim=embedding_length) # Embedding layer
torch.nn.init.xavier_uniform_(self.Ws.weight) # Glorot initialization
Here's the reference for layer initialization methods. Xavier init is another name for Glorot init.
The _ at the end of torch.nn.init.xavier_uniform_ is a pytorch convention that signifies an inplace operation.
You can also use torch.nn.init at runtime. It doesn't have to be within __init__(). Like:
att = Attention_module(class_num, input_shape)
torch.nn.init.xavier_uniform_(att.Ws.weight)
or :
for param in att.parameters():
torch.nn.init.xavier_uniform_(param)

Pytorch dynamic amount of Layers?

I am trying to specify a dynamic amount of layers, which I seem to be doing wrong.
My issue is that when I define the 100 layers here, I will get an error in the forward step.
But when I define the layer properly it works?
Below simplified example
class PredictFromEmbeddParaSmall(LightningModule):
def __init__(self, hyperparams={'lr': 0.0001}):
super(PredictFromEmbeddParaSmall, self).__init__()
#Input is something like tensor.size=[768*100]
self.TO_ILLUSTRATE = nn.Linear(768, 5)
self.enc_ref=[]
for i in range(100):
self.enc_red.append(nn.Linear(768, 5))
# gather the layers output sth
self.dense_simple1 = nn.Linear(5*100, 2)
self.output = nn.Sigmoid()
def forward(self, x):
# first input to enc_red
x_vecs = []
for i in range(self.para_count):
layer = self.enc_red[i]
# The first dim is the batch size here, output is correct
processed_slice = x[:, i * 768:(i + 1) * 768]
# This works and give the out of size 5
rand = self.TO_ILLUSTRATE(processed_slice)
#This will fail? Error below
ret = layer(processed_slice)
#more things happening we can ignore right now since we fail earlier
I get this error when executing "ret = layer.forward(processed_slice)"
RuntimeError: Expected object of device type cuda but got device type
cpu for argument #1 'self' in call to _th_addmm
Is there a smarter way to program this? OR solve the error?
You should use a ModuleList from pytorch instead of a list: https://pytorch.org/docs/master/generated/torch.nn.ModuleList.html . That is because Pytorch has to keep a graph with all modules of your model, if you just add them in a list they are not properly indexed in the graph, resulting in the error you faced.
Your coude should be something alike:
class PredictFromEmbeddParaSmall(LightningModule):
def __init__(self, hyperparams={'lr': 0.0001}):
super(PredictFromEmbeddParaSmall, self).__init__()
#Input is something like tensor.size=[768*100]
self.TO_ILLUSTRATE = nn.Linear(768, 5)
self.enc_ref=nn.ModuleList() # << MODIFIED LINE <<
for i in range(100):
self.enc_red.append(nn.Linear(768, 5))
# gather the layers output sth
self.dense_simple1 = nn.Linear(5*100, 2)
self.output = nn.Sigmoid()
def forward(self, x):
# first input to enc_red
x_vecs = []
for i in range(self.para_count):
layer = self.enc_red[i]
# The first dim is the batch size here, output is correct
processed_slice = x[:, i * 768:(i + 1) * 768]
# This works and give the out of size 5
rand = self.TO_ILLUSTRATE(processed_slice)
#This will fail? Error below
ret = layer(processed_slice)
#more things happening we can ignore right now since we fail earlier
Then it should work all right!
Edit: alternative way.
Instead of using ModuleList you can also just use nn.Sequential, this allows you to avoid using the for loop in the forward pass. That also means that you will not have access to intermediary activations, so that is not the solution for you if you need them.
class PredictFromEmbeddParaSmall(LightningModule):
def __init__(self, hyperparams={'lr': 0.0001}):
super(PredictFromEmbeddParaSmall, self).__init__()
#Input is something like tensor.size=[768*100]
self.TO_ILLUSTRATE = nn.Linear(768, 5)
self.enc_ref=[]
for i in range(100):
self.enc_red.append(nn.Linear(768, 5))
self.enc_red = nn.Seqential(*self.enc_ref) # << MODIFIED LINE <<
# gather the layers output sth
self.dense_simple1 = nn.Linear(5*100, 2)
self.output = nn.Sigmoid()
def forward(self, x):
# first input to enc_red
x_vecs = []
out = self.enc_red(x) # << MODIFIED LINE <<
A little bit more adjustable solution which comes down to matter of taste or complexity of your exact situation was posted here.
For reference I post an adjusted version of the code here:
import torch
from torch import nn, optim
from torch.nn.modules import Module
from implem.settings import settings
class Model(nn.Module):
def __init__(self, input_size, layers_data: list, learning_rate=0.01, optimizer=optim.Adam):
super().__init__()
self.layers = nn.ModuleList()
self.input_size = input_size # Can be useful later ...
for size, activation in layers_data:
self.layers.append(nn.Linear(input_size, size))
input_size = size # For the next layer
if activation is not None:
assert isinstance(activation, Module), \
"Each tuples should contain a size (int) and a torch.nn.modules.Module."
self.layers.append(activation)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.learning_rate = learning_rate
self.optimizer = optimizer(params=self.parameters(), lr=learning_rate)
def forward(self, input_data):
for layer in self.layers:
input_data = layer(input_data)
return input_data
# test that the net is working properly
if __name__ == "__main__":
data_size = 5
layer1, layer2 = 10, 10
output_size = 2
data = torch.randn(data_size)
mlp = Model(data_size, [(layer1, nn.ReLU()), (layer2, nn.ReLU()), (output_size, nn.Sigmoid())])
output = mlp(data)
print("done")

ValueError: optimizer got an empty parameter list

I create the following simple linear class:
class Decoder(nn.Module):
def __init__(self, K, h=()):
super().__init__()
h = (K,)+h+(K,)
self.layers = [nn.Linear(h1,h2) for h1,h2 in zip(h, h[1:])]
def forward(self, x):
for layer in self.layers[:-1]:
x = F.relu(layer(x))
return self.layers[-1](x)
However, when I try to put the parameters in a optimizer class I get the error ValueError: optimizer got an empty parameter list.
decoder = Decoder(4)
LR = 1e-3
opt = optim.Adam(decoder.parameters(), lr=LR)
Is there something I'm doing obviously wrong with the class definition?
Since you store your layers in a regular pythonic list inside your Decoder, Pytorch has no way of telling these members of the self.list are actually sub modules. Convert this list into pytorch's nn.ModuleList and your problem will be solved
class Decoder(nn.Module):
def __init__(self, K, h=()):
super().__init__()
h = (K,)+h+(K,)
self.layers = nn.ModuleList(nn.Linear(h1,h2) for h1,h2 in zip(h, h[1:]))

How to add an image to summary during evaluation when using Estimator?

I run an evaluation at the end of each epoch and need to show an image calculated from the features and labels arguments of the model function model_fn. Including a tf.summary.image(name, image) in evaluation part of the model function does not help and it looks to me that the only way to do so is to pass the correct eval_metric_ops to construct the EstimatorSpec for mode EVAL. So I first sub-class Estimator so that it considers images. The following code is mostly from estimator.py; the only change is the few lines marked by "my change" inside _write_dict_to_summary:
import logging
import io
import numpy as np
import matplotlib.pyplot as plt
import six
from google.protobuf import message
import tensorflow as tf
from tensorflow.python.training import evaluation
from tensorflow.python import ops
from tensorflow.python.estimator.estimator import _dict_to_str, _write_checkpoint_path_to_summary
from tensorflow.core.framework import summary_pb2
from tensorflow.python.framework import tensor_util
from tensorflow.python.summary.writer import writer_cache
def dump_as_image(a):
vmin = np.min(a)
vmax = np.max(a)
img = np.squeeze((img - vmin) / (vmax - vmin) * 255).astype(np.uint8)
s = io.BytesIO()
plt.imsave(s, img, format='png', vmin=0, vmax=255, cmap='gray')
return s.getvalue()
# see https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/estimator/estimator.py
def _write_dict_to_summary(output_dir, dictionary, current_global_step):
logging.info('Saving dict for global step %d: %s', current_global_step, _dict_to_str(dictionary))
summary_writer = writer_cache.FileWriterCache.get(output_dir)
summary_proto = summary_pb2.Summary()
for key in dictionary:
if dictionary[key] is None:
continue
if key == 'global_step':
continue
if (isinstance(dictionary[key], np.float32) or
isinstance(dictionary[key], float)):
summary_proto.value.add(tag=key, simple_value=float(dictionary[key]))
elif (isinstance(dictionary[key], np.int64) or
isinstance(dictionary[key], np.int32) or
isinstance(dictionary[key], int)):
summary_proto.value.add(tag=key, simple_value=int(dictionary[key]))
elif isinstance(dictionary[key], six.binary_type):
try:
summ = summary_pb2.Summary.FromString(dictionary[key])
for i, img_bytes in enumerate(summ.value):
summ.value[i].tag = '%s/%d' % (key, i)
summary_proto.value.extend(summ.value)
except message.DecodeError:
logging.warn('Skipping summary for %s, cannot parse string to Summary.', key)
continue
elif isinstance(dictionary[key], np.ndarray):
value = summary_proto.value.add()
value.tag = key
value.node_name = key
array = dictionary[key]
# my change begins
if array.ndim == 2:
buffer = dump_as_image(array)
value.image.encoded_image_string = buffer
# my change ends
else:
tensor_proto = tensor_util.make_tensor_proto(array)
value.tensor.CopyFrom(tensor_proto)
logging.info(
'Summary for np.ndarray is not visible in Tensorboard by default. '
'Consider using a Tensorboard plugin for visualization (see '
'https://github.com/tensorflow/tensorboard-plugin-example/blob/master/README.md'
' for more information).')
else:
logging.warn(
'Skipping summary for %s, must be a float, np.float32, np.int64, '
'np.int32 or int or np.ndarray or a serialized string of Summary.',
key)
summary_writer.add_summary(summary_proto, current_global_step)
summary_writer.flush()
class ImageMonitoringEstimator(tf.estimator.Estimator):
def __init__(self, *args, **kwargs):
tf.estimator.Estimator._assert_members_are_not_overridden = lambda self: None
super(ImageMonitoringEstimator, self).__init__(*args, **kwargs)
def _evaluate_run(self, checkpoint_path, scaffold, update_op, eval_dict, all_hooks, output_dir):
eval_results = evaluation._evaluate_once(
checkpoint_path=checkpoint_path,
master=self._config.evaluation_master,
scaffold=scaffold,
eval_ops=update_op,
final_ops=eval_dict,
hooks=all_hooks,
config=self._session_config)
current_global_step = eval_results[ops.GraphKeys.GLOBAL_STEP]
_write_dict_to_summary(
output_dir=output_dir,
dictionary=eval_results,
current_global_step=current_global_step)
if checkpoint_path:
_write_checkpoint_path_to_summary(
output_dir=output_dir,
checkpoint_path=checkpoint_path,
current_global_step=current_global_step)
return eval_results
the model function is like --
def model_func(features, labels, mode):
# calculate network_output
if mode == tf.estimator.ModeKeys.TRAIN:
# training
elif mode == tf.estimator.ModeKeys.EVAL:
# make_image consists of slicing and concatenations
images = tf.map_fn(make_image, (features, network_output, labels), dtype=features.dtype)
eval_metric_ops = images, tf.no_op() # not working
return tf.estimator.EstimatorSpec(mode, loss=loss)
eval_metric_ops={'images': eval_metric_ops})
else:
# prediction
And the main part --
# mon_features and mon_labels are np.ndarray
estimator = ImageMonitoringEstimator(model_fn=model_func,...)
mon_input_func = tf.estimator.inputs.numpy_input_fn(mon_features,
mon_labels,
shuffle=False,
num_epochs=num_epochs,
batch_size=len(mon_features))
for _ in range(num_epochs):
estimator.train(...)
estimator.evaluate(input_fn=mon_input_func)
The code above will give a warning (later an error):
WARNING:tensorflow:An OutOfRangeError or StopIteration exception is
raised by the code in FinalOpsHook. This typically means the Ops
running by the FinalOpsHook have a dependency back to some input
source, which should not happen. For example, for metrics in
tf.estimator.Estimator, all metrics functions return two Ops:
value_op and update_op. Estimator.evaluate calls the update_op
for each batch of the data in input source and, once it is exhausted,
it call the value_op to get the metric values. The value_op here
should have dependency back to variables reading only, rather than
reading another batch from input. Otherwise, the value_op, executed
by FinalOpsHook, triggers another data reading, which ends
OutOfRangeError/StopIteration. Please fix that.
Looks like I didn't set the eval_metric_ops correctly. I guess tf.map_fn touches another batch as the warning message hints; maybe I need some stacking operation as the update_op to build the images used for monitoring incrementally? But I am not sure how to do that. So how to add an image to summary during evaluation when using Estimator?
The way I make it work is by passing a tf.train.SummarySaverHook under the evaluation mode and then declaring it to the tf.estimator.EstimatorSpec at evaluation_hooks=.
images is a list of the desired tf.summary.image you want to print during evaluation.
example:
eval_summary_hook = tf.train.SummarySaverHook(output_dir=params['eval_save_path'], summary_op=images, save_secs=120)
spec = tf.estimator.EstimatorSpec(mode=mode, predictions=y_pred, loss=loss, eval_metric_ops=eval_metric_ops,
evaluation_hooks=[eval_summary_hook])

Resources