Related
I have the following:
let mut my_number = 32.90;
How do I print the type of my_number?
Using type and type_of did not work. Is there another way I can print the number's type?
You can use the std::any::type_name function. This doesn't need a nightly compiler or an external crate, and the results are quite correct:
fn print_type_of<T>(_: &T) {
println!("{}", std::any::type_name::<T>())
}
fn main() {
let s = "Hello";
let i = 42;
print_type_of(&s); // &str
print_type_of(&i); // i32
print_type_of(&main); // playground::main
print_type_of(&print_type_of::<i32>); // playground::print_type_of<i32>
print_type_of(&{ || "Hi!" }); // playground::main::{{closure}}
}
Be warned: as said in the documentation, this information must be used for a debug purpose only:
This is intended for diagnostic use. The exact contents and format of the string are not specified, other than being a best-effort description of the type.
If you want your type representation to stay the same between compiler versions, you should use a trait, like in the phicr's answer.
If you merely wish to find out the type of a variable and are willing to do it at compile time, you can cause an error and get the compiler to pick it up.
For example, set the variable to a type which doesn't work:
let mut my_number: () = 32.90;
// let () = x; would work too
error[E0308]: mismatched types
--> src/main.rs:2:29
|
2 | let mut my_number: () = 32.90;
| ^^^^^ expected (), found floating-point number
|
= note: expected type `()`
found type `{float}`
Or call an invalid method:
let mut my_number = 32.90;
my_number.what_is_this();
error[E0599]: no method named `what_is_this` found for type `{float}` in the current scope
--> src/main.rs:3:15
|
3 | my_number.what_is_this();
| ^^^^^^^^^^^^
Or access an invalid field:
let mut my_number = 32.90;
my_number.what_is_this
error[E0610]: `{float}` is a primitive type and therefore doesn't have fields
--> src/main.rs:3:15
|
3 | my_number.what_is_this
| ^^^^^^^^^^^^
These reveal the type, which in this case is actually not fully resolved. It’s called “floating-point variable” in the first example, and “{float}” in all three examples; this is a partially resolved type which could end up f32 or f64, depending on how you use it. “{float}” is not a legal type name, it’s a placeholder meaning “I’m not completely sure what this is”, but it is a floating-point number. In the case of floating-point variables, if you don't constrain it, it will default to f64¹. (An unqualified integer literal will default to i32.)
See also:
What is the {integer} or {float} in a compiler error message?
¹ There may still be ways of baffling the compiler so that it can’t decide between f32 and f64; I’m not sure. It used to be as simple as 32.90.eq(&32.90), but that treats both as f64 now and chugs along happily, so I don’t know.
There is an unstable function std::intrinsics::type_name that can get you the name of a type, though you have to use a nightly build of Rust (this is unlikely to ever work in stable Rust). Here’s an example:
#![feature(core_intrinsics)]
fn print_type_of<T>(_: &T) {
println!("{}", unsafe { std::intrinsics::type_name::<T>() });
}
fn main() {
print_type_of(&32.90); // prints "f64"
print_type_of(&vec![1, 2, 4]); // prints "std::vec::Vec<i32>"
print_type_of(&"foo"); // prints "&str"
}
If you know all the types beforehand, you can use traits to add a type_of method:
trait TypeInfo {
fn type_of(&self) -> &'static str;
}
impl TypeInfo for i32 {
fn type_of(&self) -> &'static str {
"i32"
}
}
impl TypeInfo for i64 {
fn type_of(&self) -> &'static str {
"i64"
}
}
//...
No intrisics or nothin', so although more limited this is the only solution here that gets you a string and is stable. (see Boiethios's answer) However, it's very laborious and doesn't account for type parameters, so we could...
trait TypeInfo {
fn type_name() -> String;
fn type_of(&self) -> String;
}
macro_rules! impl_type_info {
($($name:ident$(<$($T:ident),+>)*),*) => {
$(impl_type_info_single!($name$(<$($T),*>)*);)*
};
}
macro_rules! mut_if {
($name:ident = $value:expr, $($any:expr)+) => (let mut $name = $value;);
($name:ident = $value:expr,) => (let $name = $value;);
}
macro_rules! impl_type_info_single {
($name:ident$(<$($T:ident),+>)*) => {
impl$(<$($T: TypeInfo),*>)* TypeInfo for $name$(<$($T),*>)* {
fn type_name() -> String {
mut_if!(res = String::from(stringify!($name)), $($($T)*)*);
$(
res.push('<');
$(
res.push_str(&$T::type_name());
res.push(',');
)*
res.pop();
res.push('>');
)*
res
}
fn type_of(&self) -> String {
$name$(::<$($T),*>)*::type_name()
}
}
}
}
impl<'a, T: TypeInfo + ?Sized> TypeInfo for &'a T {
fn type_name() -> String {
let mut res = String::from("&");
res.push_str(&T::type_name());
res
}
fn type_of(&self) -> String {
<&T>::type_name()
}
}
impl<'a, T: TypeInfo + ?Sized> TypeInfo for &'a mut T {
fn type_name() -> String {
let mut res = String::from("&mut ");
res.push_str(&T::type_name());
res
}
fn type_of(&self) -> String {
<&mut T>::type_name()
}
}
macro_rules! type_of {
($x:expr) => { (&$x).type_of() };
}
Let's use it:
impl_type_info!(i32, i64, f32, f64, str, String, Vec<T>, Result<T,S>)
fn main() {
println!("{}", type_of!(1));
println!("{}", type_of!(&1));
println!("{}", type_of!(&&1));
println!("{}", type_of!(&mut 1));
println!("{}", type_of!(&&mut 1));
println!("{}", type_of!(&mut &1));
println!("{}", type_of!(1.0));
println!("{}", type_of!("abc"));
println!("{}", type_of!(&"abc"));
println!("{}", type_of!(String::from("abc")));
println!("{}", type_of!(vec![1,2,3]));
println!("{}", <Result<String,i64>>::type_name());
println!("{}", <&i32>::type_name());
println!("{}", <&str>::type_name());
}
output:
i32
&i32
&&i32
&mut i32
&&mut i32
&mut &i32
f64
&str
&&str
String
Vec<i32>
Result<String,i64>
&i32
&str
Rust Playground
UPD The following does not work anymore. Check Shubham's answer for correction.
Check out std::intrinsics::get_tydesc<T>(). It is in "experimental" state right now, but it's OK if you are just hacking around the type system.
Check out the following example:
fn print_type_of<T>(_: &T) -> () {
let type_name =
unsafe {
(*std::intrinsics::get_tydesc::<T>()).name
};
println!("{}", type_name);
}
fn main() -> () {
let mut my_number = 32.90;
print_type_of(&my_number); // prints "f64"
print_type_of(&(vec!(1, 2, 4))); // prints "collections::vec::Vec<int>"
}
This is what is used internally to implement the famous {:?} formatter.
Update, original answer below
How about trait function type_name, which is useful to get type name quickly.
pub trait AnyExt {
fn type_name(&self) -> &'static str;
}
impl<T> AnyExt for T {
fn type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
}
fn main(){
let my_number = 32.90;
println!("{}",my_number.type_name());
}
Output:
f64
Original answer
I write a macro type_of!() to debug, which is original from std dbg!().
pub fn type_of2<T>(v: T) -> (&'static str, T) {
(std::any::type_name::<T>(), v)
}
#[macro_export]
macro_rules! type_of {
// NOTE: We cannot use `concat!` to make a static string as a format argument
// of `eprintln!` because `file!` could contain a `{` or
// `$val` expression could be a block (`{ .. }`), in which case the `eprintln!`
// will be malformed.
() => {
eprintln!("[{}:{}]", file!(), line!());
};
($val:expr $(,)?) => {
// Use of `match` here is intentional because it affects the lifetimes
// of temporaries - https://stackoverflow.com/a/48732525/1063961
match $val {
tmp => {
let (type_,tmp) = $crate::type_of2(tmp);
eprintln!("[{}:{}] {}: {}",
file!(), line!(), stringify!($val), type_);
tmp
}
}
};
($($val:expr),+ $(,)?) => {
($($crate::type_of!($val)),+,)
};
}
fn main(){
let my_number = type_of!(32.90);
type_of!(my_number);
}
Output:
[src/main.rs:32] 32.90: f64
[src/main.rs:33] my_number: f64
** UPDATE ** This has not been verified to work any time recently.
I put together a little crate to do this based off vbo's answer. It gives you a macro to return or print out the type.
Put this in your Cargo.toml file:
[dependencies]
t_bang = "0.1.2"
Then you can use it like so:
#[macro_use] extern crate t_bang;
use t_bang::*;
fn main() {
let x = 5;
let x_type = t!(x);
println!("{:?}", x_type); // prints out: "i32"
pt!(x); // prints out: "i32"
pt!(5); // prints out: "i32"
}
You can also use the simple approach of using the variable in println!("{:?}", var). If Debug is not implemented for the type, you can see the type in the compiler's error message:
mod some {
pub struct SomeType;
}
fn main() {
let unknown_var = some::SomeType;
println!("{:?}", unknown_var);
}
(playpen)
It's dirty but it works.
There's a #ChrisMorgan answer to get approximate type ("float") in stable rust and there's a #ShubhamJain answer to get precise type ("f64") through unstable function in nightly rust.
Now here's a way one can get precise type (ie decide between f32 and f64) in stable rust:
fn main() {
let a = 5.;
let _: () = unsafe { std::mem::transmute(a) };
}
results in
error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
--> main.rs:3:27
|
3 | let _: () = unsafe { std::mem::transmute(a) };
| ^^^^^^^^^^^^^^^^^^^
|
= note: source type: `f64` (64 bits)
= note: target type: `()` (0 bits)
Update
The turbofish variation
fn main() {
let a = 5.;
unsafe { std::mem::transmute::<_, ()>(a) }
}
is slightly shorter but somewhat less readable.
Some other answers don't work, but I find that the typename crate works.
Create a new project:
cargo new test_typename
Modify the Cargo.toml
[dependencies]
typename = "0.1.1"
Modify your source code
use typename::TypeName;
fn main() {
assert_eq!(String::type_name(), "std::string::String");
assert_eq!(Vec::<i32>::type_name(), "std::vec::Vec<i32>");
assert_eq!([0, 1, 2].type_name_of(), "[i32; 3]");
let a = 65u8;
let b = b'A';
let c = 65;
let d = 65i8;
let e = 65i32;
let f = 65u32;
let arr = [1,2,3,4,5];
let first = arr[0];
println!("type of a 65u8 {} is {}", a, a.type_name_of());
println!("type of b b'A' {} is {}", b, b.type_name_of());
println!("type of c 65 {} is {}", c, c.type_name_of());
println!("type of d 65i8 {} is {}", d, d.type_name_of());
println!("type of e 65i32 {} is {}", e, e.type_name_of());
println!("type of f 65u32 {} is {}", f, f.type_name_of());
println!("type of arr {:?} is {}", arr, arr.type_name_of());
println!("type of first {} is {}", first, first.type_name_of());
}
The output is:
type of a 65u8 65 is u8
type of b b'A' 65 is u8
type of c 65 65 is i32
type of d 65i8 65 is i8
type of e 65i32 65 is i32
type of f 65u32 65 is u32
type of arr [1, 2, 3, 4, 5] is [i32; 5]
type of first 1 is i32
If your just wanting to know the type of your variable during interactive development, I would highly recommend using rls (rust language server) inside of your editor or ide. You can then simply permanently enable or toggle the hover ability and just put your cursor over the variable. A little dialog should come up with information about the variable including the type.
This is simplified version of #Boiethios answer. I have removed some '&' symbols from original solution.
fn print_type_of<T>(_: T) {
println!("{}", std::any::type_name::<T>())
}
fn main() {
let s = "Hello";
let i = 42;
print_type_of(s); // &str
print_type_of(i); // i32
print_type_of(main); // playground::main
print_type_of(print_type_of::<i32>); // playground::print_type_of<i32>
print_type_of(|| "Hi!" ); // playground::main::{{closure}}
}
View in Rust Playground
Newly added in version 1.38 std::any::type_name
use std::any::type_name;
fn type_of<T>(_: T) -> &'static str {
type_name::<T>()
}
fn main() {
let x = 21;
let y = 2.5;
println!("{}", type_of(&y));
println!("{}", type_of(x));
}
short story;
fn tyof<T>(_: &T) -> String {
std::any::type_name::<T>().into()
}
long story;
trait Type {
fn type_of(&self) -> String;
}
macro_rules! Type {
($($ty:ty),*) => {
$(
impl Type for $ty {
fn type_of(&self) -> String {
stringify!($ty).into()
}
}
)*
}
}
#[rustfmt::skip]
Type!(
u8, i8, u16, i16, u32, i32, i64, u64, i128, String, [()], (), Vec<()>, &u8, &i8, &u16, &i16, &u32, &i32, &i64, &u64, &i128, &str, &[()], &Vec<()>, &()
// add any struct, enum or type you want
);
macro_rules! tyof {
($var: expr) => {{
$var.type_of()
}};
}
fn main() {
let x = "Hello world!";
println!("{}", tyof!(x));
// or
println!("{}", x.type_of());
let x = 5;
println!("{}", tyof!(x));
// or
println!("{}", x.type_of());
}
Macro form permits an usage "everywhere" while the function need an object to be parse.
Macro form (one liner):
macro_rules! ty {($type:ty) => {std::any::type_name::<$type>()}}
Macro form formated:
macro_rules! ty {
($type:ty) => {
std::any::type_name::<$type>()
};
}
Function form (borrowing is to not destroy the parsed var):
fn type_of<T>(_: &T) -> &'static str {std::any::type_name::<T>()}
fn type_of<T>(_: &T) -> &'static str {
std::any::type_name::<T>()
}
Example:
macro_rules! ty {($type:ty) => {std::any::type_name::<$type>()}}
fn type_of<T>(_: &T) -> &'static str {std::any::type_name::<T>()}
struct DontMater<T>(T);
impl<T: std::fmt::Debug> std::fmt::Debug for DontMater<T> {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
fmt.write_fmt(format_args!("DontMater<{}>({:?})", ty!(T), self.0))
}
}
fn main() {
type µ = [Vec<String>; 7];
println!("{:?}", DontMater(5_usize));
println!("{:?}", DontMater("¤"));
println!("{}", ty!(char));
println!("{:?}", ty!(µ));
println!("{}", type_of(&DontMater(72_i8)));
println!("{:?}", type_of(&15_f64));
}
Returns:
DontMater<usize>(5)
DontMater<&str>("¤")
char
"[alloc::vec::Vec<alloc::string::String>; 7]"
env_vars::DontMater<i8>
"f64"
I like previous answer by #Coautose very much, but in case anyone wants just the type name without the namespace, for example C instead of a::b::C, here is a modified version of the macro that appears to work as intended:
macro_rules! ty {
($type:ty) => {{
let result = std::any::type_name::<$type>();
match result.rsplit_once(':') {
Some((_, s)) => s,
None => result,
}
}};
}
Usage:
debug!("Testing type name: {}", ty!(A));
Better to use this:
fn print_type_of<T>(_: &T) -> String {
format!("{}", std::any::type_name::<T>())
}
fn main() {
let s = &"hello world".to_string();
let cloned_s = s.clone();
println!("{:?}", print_type_of(&s));
println!("{:?}", print_type_of(&cloned_s));
}
Taken inference from https://stackoverflow.com/a/29168659/6774636
I have the following:
let mut my_number = 32.90;
How do I print the type of my_number?
Using type and type_of did not work. Is there another way I can print the number's type?
You can use the std::any::type_name function. This doesn't need a nightly compiler or an external crate, and the results are quite correct:
fn print_type_of<T>(_: &T) {
println!("{}", std::any::type_name::<T>())
}
fn main() {
let s = "Hello";
let i = 42;
print_type_of(&s); // &str
print_type_of(&i); // i32
print_type_of(&main); // playground::main
print_type_of(&print_type_of::<i32>); // playground::print_type_of<i32>
print_type_of(&{ || "Hi!" }); // playground::main::{{closure}}
}
Be warned: as said in the documentation, this information must be used for a debug purpose only:
This is intended for diagnostic use. The exact contents and format of the string are not specified, other than being a best-effort description of the type.
If you want your type representation to stay the same between compiler versions, you should use a trait, like in the phicr's answer.
If you merely wish to find out the type of a variable and are willing to do it at compile time, you can cause an error and get the compiler to pick it up.
For example, set the variable to a type which doesn't work:
let mut my_number: () = 32.90;
// let () = x; would work too
error[E0308]: mismatched types
--> src/main.rs:2:29
|
2 | let mut my_number: () = 32.90;
| ^^^^^ expected (), found floating-point number
|
= note: expected type `()`
found type `{float}`
Or call an invalid method:
let mut my_number = 32.90;
my_number.what_is_this();
error[E0599]: no method named `what_is_this` found for type `{float}` in the current scope
--> src/main.rs:3:15
|
3 | my_number.what_is_this();
| ^^^^^^^^^^^^
Or access an invalid field:
let mut my_number = 32.90;
my_number.what_is_this
error[E0610]: `{float}` is a primitive type and therefore doesn't have fields
--> src/main.rs:3:15
|
3 | my_number.what_is_this
| ^^^^^^^^^^^^
These reveal the type, which in this case is actually not fully resolved. It’s called “floating-point variable” in the first example, and “{float}” in all three examples; this is a partially resolved type which could end up f32 or f64, depending on how you use it. “{float}” is not a legal type name, it’s a placeholder meaning “I’m not completely sure what this is”, but it is a floating-point number. In the case of floating-point variables, if you don't constrain it, it will default to f64¹. (An unqualified integer literal will default to i32.)
See also:
What is the {integer} or {float} in a compiler error message?
¹ There may still be ways of baffling the compiler so that it can’t decide between f32 and f64; I’m not sure. It used to be as simple as 32.90.eq(&32.90), but that treats both as f64 now and chugs along happily, so I don’t know.
There is an unstable function std::intrinsics::type_name that can get you the name of a type, though you have to use a nightly build of Rust (this is unlikely to ever work in stable Rust). Here’s an example:
#![feature(core_intrinsics)]
fn print_type_of<T>(_: &T) {
println!("{}", unsafe { std::intrinsics::type_name::<T>() });
}
fn main() {
print_type_of(&32.90); // prints "f64"
print_type_of(&vec![1, 2, 4]); // prints "std::vec::Vec<i32>"
print_type_of(&"foo"); // prints "&str"
}
If you know all the types beforehand, you can use traits to add a type_of method:
trait TypeInfo {
fn type_of(&self) -> &'static str;
}
impl TypeInfo for i32 {
fn type_of(&self) -> &'static str {
"i32"
}
}
impl TypeInfo for i64 {
fn type_of(&self) -> &'static str {
"i64"
}
}
//...
No intrisics or nothin', so although more limited this is the only solution here that gets you a string and is stable. (see Boiethios's answer) However, it's very laborious and doesn't account for type parameters, so we could...
trait TypeInfo {
fn type_name() -> String;
fn type_of(&self) -> String;
}
macro_rules! impl_type_info {
($($name:ident$(<$($T:ident),+>)*),*) => {
$(impl_type_info_single!($name$(<$($T),*>)*);)*
};
}
macro_rules! mut_if {
($name:ident = $value:expr, $($any:expr)+) => (let mut $name = $value;);
($name:ident = $value:expr,) => (let $name = $value;);
}
macro_rules! impl_type_info_single {
($name:ident$(<$($T:ident),+>)*) => {
impl$(<$($T: TypeInfo),*>)* TypeInfo for $name$(<$($T),*>)* {
fn type_name() -> String {
mut_if!(res = String::from(stringify!($name)), $($($T)*)*);
$(
res.push('<');
$(
res.push_str(&$T::type_name());
res.push(',');
)*
res.pop();
res.push('>');
)*
res
}
fn type_of(&self) -> String {
$name$(::<$($T),*>)*::type_name()
}
}
}
}
impl<'a, T: TypeInfo + ?Sized> TypeInfo for &'a T {
fn type_name() -> String {
let mut res = String::from("&");
res.push_str(&T::type_name());
res
}
fn type_of(&self) -> String {
<&T>::type_name()
}
}
impl<'a, T: TypeInfo + ?Sized> TypeInfo for &'a mut T {
fn type_name() -> String {
let mut res = String::from("&mut ");
res.push_str(&T::type_name());
res
}
fn type_of(&self) -> String {
<&mut T>::type_name()
}
}
macro_rules! type_of {
($x:expr) => { (&$x).type_of() };
}
Let's use it:
impl_type_info!(i32, i64, f32, f64, str, String, Vec<T>, Result<T,S>)
fn main() {
println!("{}", type_of!(1));
println!("{}", type_of!(&1));
println!("{}", type_of!(&&1));
println!("{}", type_of!(&mut 1));
println!("{}", type_of!(&&mut 1));
println!("{}", type_of!(&mut &1));
println!("{}", type_of!(1.0));
println!("{}", type_of!("abc"));
println!("{}", type_of!(&"abc"));
println!("{}", type_of!(String::from("abc")));
println!("{}", type_of!(vec![1,2,3]));
println!("{}", <Result<String,i64>>::type_name());
println!("{}", <&i32>::type_name());
println!("{}", <&str>::type_name());
}
output:
i32
&i32
&&i32
&mut i32
&&mut i32
&mut &i32
f64
&str
&&str
String
Vec<i32>
Result<String,i64>
&i32
&str
Rust Playground
UPD The following does not work anymore. Check Shubham's answer for correction.
Check out std::intrinsics::get_tydesc<T>(). It is in "experimental" state right now, but it's OK if you are just hacking around the type system.
Check out the following example:
fn print_type_of<T>(_: &T) -> () {
let type_name =
unsafe {
(*std::intrinsics::get_tydesc::<T>()).name
};
println!("{}", type_name);
}
fn main() -> () {
let mut my_number = 32.90;
print_type_of(&my_number); // prints "f64"
print_type_of(&(vec!(1, 2, 4))); // prints "collections::vec::Vec<int>"
}
This is what is used internally to implement the famous {:?} formatter.
Update, original answer below
How about trait function type_name, which is useful to get type name quickly.
pub trait AnyExt {
fn type_name(&self) -> &'static str;
}
impl<T> AnyExt for T {
fn type_name(&self) -> &'static str {
std::any::type_name::<T>()
}
}
fn main(){
let my_number = 32.90;
println!("{}",my_number.type_name());
}
Output:
f64
Original answer
I write a macro type_of!() to debug, which is original from std dbg!().
pub fn type_of2<T>(v: T) -> (&'static str, T) {
(std::any::type_name::<T>(), v)
}
#[macro_export]
macro_rules! type_of {
// NOTE: We cannot use `concat!` to make a static string as a format argument
// of `eprintln!` because `file!` could contain a `{` or
// `$val` expression could be a block (`{ .. }`), in which case the `eprintln!`
// will be malformed.
() => {
eprintln!("[{}:{}]", file!(), line!());
};
($val:expr $(,)?) => {
// Use of `match` here is intentional because it affects the lifetimes
// of temporaries - https://stackoverflow.com/a/48732525/1063961
match $val {
tmp => {
let (type_,tmp) = $crate::type_of2(tmp);
eprintln!("[{}:{}] {}: {}",
file!(), line!(), stringify!($val), type_);
tmp
}
}
};
($($val:expr),+ $(,)?) => {
($($crate::type_of!($val)),+,)
};
}
fn main(){
let my_number = type_of!(32.90);
type_of!(my_number);
}
Output:
[src/main.rs:32] 32.90: f64
[src/main.rs:33] my_number: f64
** UPDATE ** This has not been verified to work any time recently.
I put together a little crate to do this based off vbo's answer. It gives you a macro to return or print out the type.
Put this in your Cargo.toml file:
[dependencies]
t_bang = "0.1.2"
Then you can use it like so:
#[macro_use] extern crate t_bang;
use t_bang::*;
fn main() {
let x = 5;
let x_type = t!(x);
println!("{:?}", x_type); // prints out: "i32"
pt!(x); // prints out: "i32"
pt!(5); // prints out: "i32"
}
You can also use the simple approach of using the variable in println!("{:?}", var). If Debug is not implemented for the type, you can see the type in the compiler's error message:
mod some {
pub struct SomeType;
}
fn main() {
let unknown_var = some::SomeType;
println!("{:?}", unknown_var);
}
(playpen)
It's dirty but it works.
There's a #ChrisMorgan answer to get approximate type ("float") in stable rust and there's a #ShubhamJain answer to get precise type ("f64") through unstable function in nightly rust.
Now here's a way one can get precise type (ie decide between f32 and f64) in stable rust:
fn main() {
let a = 5.;
let _: () = unsafe { std::mem::transmute(a) };
}
results in
error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
--> main.rs:3:27
|
3 | let _: () = unsafe { std::mem::transmute(a) };
| ^^^^^^^^^^^^^^^^^^^
|
= note: source type: `f64` (64 bits)
= note: target type: `()` (0 bits)
Update
The turbofish variation
fn main() {
let a = 5.;
unsafe { std::mem::transmute::<_, ()>(a) }
}
is slightly shorter but somewhat less readable.
Some other answers don't work, but I find that the typename crate works.
Create a new project:
cargo new test_typename
Modify the Cargo.toml
[dependencies]
typename = "0.1.1"
Modify your source code
use typename::TypeName;
fn main() {
assert_eq!(String::type_name(), "std::string::String");
assert_eq!(Vec::<i32>::type_name(), "std::vec::Vec<i32>");
assert_eq!([0, 1, 2].type_name_of(), "[i32; 3]");
let a = 65u8;
let b = b'A';
let c = 65;
let d = 65i8;
let e = 65i32;
let f = 65u32;
let arr = [1,2,3,4,5];
let first = arr[0];
println!("type of a 65u8 {} is {}", a, a.type_name_of());
println!("type of b b'A' {} is {}", b, b.type_name_of());
println!("type of c 65 {} is {}", c, c.type_name_of());
println!("type of d 65i8 {} is {}", d, d.type_name_of());
println!("type of e 65i32 {} is {}", e, e.type_name_of());
println!("type of f 65u32 {} is {}", f, f.type_name_of());
println!("type of arr {:?} is {}", arr, arr.type_name_of());
println!("type of first {} is {}", first, first.type_name_of());
}
The output is:
type of a 65u8 65 is u8
type of b b'A' 65 is u8
type of c 65 65 is i32
type of d 65i8 65 is i8
type of e 65i32 65 is i32
type of f 65u32 65 is u32
type of arr [1, 2, 3, 4, 5] is [i32; 5]
type of first 1 is i32
If your just wanting to know the type of your variable during interactive development, I would highly recommend using rls (rust language server) inside of your editor or ide. You can then simply permanently enable or toggle the hover ability and just put your cursor over the variable. A little dialog should come up with information about the variable including the type.
This is simplified version of #Boiethios answer. I have removed some '&' symbols from original solution.
fn print_type_of<T>(_: T) {
println!("{}", std::any::type_name::<T>())
}
fn main() {
let s = "Hello";
let i = 42;
print_type_of(s); // &str
print_type_of(i); // i32
print_type_of(main); // playground::main
print_type_of(print_type_of::<i32>); // playground::print_type_of<i32>
print_type_of(|| "Hi!" ); // playground::main::{{closure}}
}
View in Rust Playground
Newly added in version 1.38 std::any::type_name
use std::any::type_name;
fn type_of<T>(_: T) -> &'static str {
type_name::<T>()
}
fn main() {
let x = 21;
let y = 2.5;
println!("{}", type_of(&y));
println!("{}", type_of(x));
}
short story;
fn tyof<T>(_: &T) -> String {
std::any::type_name::<T>().into()
}
long story;
trait Type {
fn type_of(&self) -> String;
}
macro_rules! Type {
($($ty:ty),*) => {
$(
impl Type for $ty {
fn type_of(&self) -> String {
stringify!($ty).into()
}
}
)*
}
}
#[rustfmt::skip]
Type!(
u8, i8, u16, i16, u32, i32, i64, u64, i128, String, [()], (), Vec<()>, &u8, &i8, &u16, &i16, &u32, &i32, &i64, &u64, &i128, &str, &[()], &Vec<()>, &()
// add any struct, enum or type you want
);
macro_rules! tyof {
($var: expr) => {{
$var.type_of()
}};
}
fn main() {
let x = "Hello world!";
println!("{}", tyof!(x));
// or
println!("{}", x.type_of());
let x = 5;
println!("{}", tyof!(x));
// or
println!("{}", x.type_of());
}
Macro form permits an usage "everywhere" while the function need an object to be parse.
Macro form (one liner):
macro_rules! ty {($type:ty) => {std::any::type_name::<$type>()}}
Macro form formated:
macro_rules! ty {
($type:ty) => {
std::any::type_name::<$type>()
};
}
Function form (borrowing is to not destroy the parsed var):
fn type_of<T>(_: &T) -> &'static str {std::any::type_name::<T>()}
fn type_of<T>(_: &T) -> &'static str {
std::any::type_name::<T>()
}
Example:
macro_rules! ty {($type:ty) => {std::any::type_name::<$type>()}}
fn type_of<T>(_: &T) -> &'static str {std::any::type_name::<T>()}
struct DontMater<T>(T);
impl<T: std::fmt::Debug> std::fmt::Debug for DontMater<T> {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
fmt.write_fmt(format_args!("DontMater<{}>({:?})", ty!(T), self.0))
}
}
fn main() {
type µ = [Vec<String>; 7];
println!("{:?}", DontMater(5_usize));
println!("{:?}", DontMater("¤"));
println!("{}", ty!(char));
println!("{:?}", ty!(µ));
println!("{}", type_of(&DontMater(72_i8)));
println!("{:?}", type_of(&15_f64));
}
Returns:
DontMater<usize>(5)
DontMater<&str>("¤")
char
"[alloc::vec::Vec<alloc::string::String>; 7]"
env_vars::DontMater<i8>
"f64"
I like previous answer by #Coautose very much, but in case anyone wants just the type name without the namespace, for example C instead of a::b::C, here is a modified version of the macro that appears to work as intended:
macro_rules! ty {
($type:ty) => {{
let result = std::any::type_name::<$type>();
match result.rsplit_once(':') {
Some((_, s)) => s,
None => result,
}
}};
}
Usage:
debug!("Testing type name: {}", ty!(A));
Better to use this:
fn print_type_of<T>(_: &T) -> String {
format!("{}", std::any::type_name::<T>())
}
fn main() {
let s = &"hello world".to_string();
let cloned_s = s.clone();
println!("{:?}", print_type_of(&s));
println!("{:?}", print_type_of(&cloned_s));
}
Taken inference from https://stackoverflow.com/a/29168659/6774636
I'm working on my first Rust crate and I wanted to make my API a bit more user friendly by allowing both foo(vec!["bar", "baz"]) and foo(vec![String::from("foo"), String::from("baz")]).
So far I've managed to accept both String and &str but I'm struggling to do the same for Vec<T>.
fn foo<S: Into<String>>(string: S) -> String {
string.into()
}
fn foo_many<S: Into<String>>(strings: Vec<S>) -> Vec<String> {
strings.iter().map(|s| s.into()).collect()
}
fn main() {
println!("{}", foo(String::from("bar")));
println!("{}", foo("baz"));
for string in foo_many(vec!["foo", "bar"]) {
println!("{}", string);
}
}
The compiler error I get is:
error[E0277]: the trait bound `std::string::String: std::convert::From<&S>` is not satisfied
--> src/main.rs:6:30
|
6 | strings.iter().map(|s| s.into()).collect()
| ^^^^ the trait `std::convert::From<&S>` is not implemented for `std::string::String`
|
= help: consider adding a `where std::string::String: std::convert::From<&S>` bound
= note: required because of the requirements on the impl of `std::convert::Into<std::string::String>` for `&S`
You can go for full generic, you don't need to force user to use a Vec, better you can take a generic type that implement IntoIterator that you just have to write that Item implement Into<String>, the syntax is somehow strange and logic. You need a second generic type to do it. I call I the type that will be the iterator and T the Item type.
fn foo<S: Into<String>>(string: S) -> String {
string.into()
}
fn foo_many<I, T>(iter: I) -> Vec<String>
where
I: IntoIterator<Item = T>,
T: Into<String>,
{
iter.into_iter().map(Into::into).collect()
}
fn main() {
println!("{}", foo(String::from("bar")));
println!("{}", foo("baz"));
for string in foo_many(vec!["foo", "bar"]) {
println!("{}", string);
}
for string in foo_many(vec![foo("foo"), foo("baz")]) {
println!("{}", string);
}
}
This solve your problem and make your function even more generic.
This doesn't work because your iteration doesn't give you S but &S.
If you want to move the strings out of the vector, you must make it mutable and drain it:
fn foo_many<S: Into<String>>(mut strings: Vec<S>) -> Vec<String> {
strings.drain(..).map(|s| s.into()).collect()
}
playground
I'm new to Rust. I want to write a method (trait implementation?) that takes any of a String or a string slice, treats it as immutable, and returns a new immutable string. Let's say foo is a method that doubled whatever input you give it:
let x = "abc".foo(); // => "abcabc"
let y = x.foo(); // => "abcabcabcabc"
let z = "def".to_string().foo(); // => "defdef"
In this case, I do not care about safety or performance, I just want my code to compile for a throwaway test. If the heap grows infinitely, so be it. If this requires two trait implementations, that's fine.
Let's say foo is a method that doubled whatever input you give it.
A trait is a perfectly good way to do this, since it makes one common behavior:
trait Foo {
fn foo(&self) -> String;
}
... applied to multiple types:
impl Foo for String {
fn foo(&self) -> String {
let mut out = self.clone();
out += self;
out
}
}
impl<'a> Foo for &'a str {
fn foo(&self) -> String {
let mut out = self.to_string();
out += self;
out
}
}
Using:
let x = "abc".foo();
assert_eq!(&x, "abcabc");
let z = "shep".to_string().foo();
assert_eq!(&z, "shepshep");
Playground
The output is an owned string. Whether this value immutable or not, as typical in Rust, only comes at play at the calling site.
See also:
What's the difference between placing "mut" before a variable name and after the ":"?
If you want a borrowed string &str at the end:
trait Foo {
fn display(&self);
}
impl<T> Foo for T where T: AsRef<str> {
fn display(&self) {
println!("{}", self.as_ref());
}
}
fn main() {
"hello".display();
String::from("world").display();
}
If you want an owned String:
trait Foo {
fn display(self);
}
impl<T> Foo for T where T: Into<String> {
fn display(self) {
let s: String = self.into();
println!("{}", s);
}
}
fn main() {
"hello".display();
String::from("world").display();
}
I am developing some basic data structures to learn the syntax and Rust in general. Here is what I came up with for a stack:
#[allow(dead_code)]
mod stack {
pub struct Stack<T> {
data: Vec<T>,
}
impl<T> Stack<T> {
pub fn new() -> Stack<T> {
return Stack { data: Vec::new() };
}
pub fn pop(&mut self) -> Result<T, &str> {
let len: usize = self.data.len();
if len > 0 {
let idx_to_rmv: usize = len - 1;
let last: T = self.data.remove(idx_to_rmv);
return Result::Ok(last);
} else {
return Result::Err("Empty stack");
}
}
pub fn push(&mut self, elem: T) {
self.data.push(elem);
}
pub fn is_empty(&self) -> bool {
return self.data.len() == 0;
}
}
}
mod stack_tests {
use super::stack::Stack;
#[test]
fn basics() {
let mut s: Stack<i16> = Stack::new();
s.push(16);
s.push(27);
let pop_result = s.pop().expect("");
assert_eq!(s.pop().expect("Empty stack"), 27);
assert_eq!(s.pop().expect("Empty stack"), 16);
let pop_empty_result = s.pop();
match pop_empty_result {
Ok(_) => panic!("Should have had no result"),
Err(_) => {
println!("Empty stack");
}
}
if s.is_empty() {
println!("O");
}
}
}
I get this interesting error:
error[E0502]: cannot borrow `s` as immutable because it is also borrowed as mutable
--> src/main.rs:58:12
|
49 | let pop_empty_result = s.pop();
| - mutable borrow occurs here
...
58 | if s.is_empty() {
| ^ immutable borrow occurs here
...
61 | }
| - mutable borrow ends here
Why can't I just call pop on my mutable struct?
Why does pop borrow the value? If I add a .expect() after it, it is ok, it doesn't trigger that error. I know that is_empty takes an immutable reference, if I switch it to mutable I just get a second mutable borrow.
Your pop function is declared as:
pub fn pop(&mut self) -> Result<T, &str>
Due to lifetime elision, this expands to
pub fn pop<'a>(&'a mut self) -> Result<T, &'a str>
This says that the Result::Err variant is a string that lives as long as the stack you are calling it on. Since the input and output lifetimes are the same, the returned value might be pointing somewhere into the Stack data structure so the returned value must continue to hold the borrow.
If I add a .expect() after it, it is ok, it doesn't trigger that error.
That's because expect consumes the Result, discarding the Err variant without ever putting it into a variable binding. Since that's never stored, the borrow cannot be saved anywhere and it is released.
To solve the problem, you need to have distinct lifetimes between the input reference and output reference. Since you are using a string literal, the easiest solution is to denote that using the 'static lifetime:
pub fn pop(&mut self) -> Result<T, &'static str>
Extra notes:
Don't call return explicitly at the end of the block / method: return Result::Ok(last) => Result::Ok(last).
Result, Result::Ok, and Result::Err are all imported via the prelude, so you don't need to qualify them: Result::Ok(last) => Ok(last).
There's no need to specify types in many cases let len: usize = self.data.len() => let len = self.data.len().
This happens because of lifetimes. When you construct a method which takes a reference the compiler detects that and if no lifetimes are specified it "generates" them:
pub fn pop<'a>(&'a mut self) -> Result<T, &'a str> {
let len: usize = self.data.len();
if len > 0 {
let idx_to_rmv: usize = len - 1;
let last: T = self.data.remove(idx_to_rmv);
return Result::Ok(last);
} else {
return Result::Err("Empty stack");
}
}
This is what compiler sees actually. So, you want to return a static string, then you have to specify the lifetime for a &str explicitly and let the lifetime for the reference to mut self be inferred automatically:
pub fn pop(&mut self) -> Result<T, &'static str> {