Gensim doc2vec most_similar equivalent to get full documents - python-3.x

In Gensim's doc2vec implementation, gensim.models.keyedvectors.Doc2VecKeyedVectors.most_similar returns the tags and cosine similarity of the documents most similar to the query document. What if I want the actual documents themselves and not the tags? Is there a way to do that directly without searching for the document associated with the tag returned by most_similar?
Also, is there documentation on this? I can't seem to find the documentation for half of Gensim's classes.

The Doc2Vec class doesn't serve as a full document database that stores the original documents in their original formats. That would require a lot of extra complexity and state.
Instead, you just present the docs, with their particular tags, in the tokenized format it needs for training, and the model only learns and retains their vector representations.
If you need to then look-up the original documents, you must maintain your own (tags -> documents) lookup – which many projects will already have as the original source of the docs.
The Doc2Vec class docs are at https://radimrehurek.com/gensim/models/doc2vec.html but it may also be helpful to look at the example Jupyter notebooks included in the gensim docs/notebooks directory but also viewable online at:
https://github.com/RaRe-Technologies/gensim/tree/develop/docs/notebooks
The three notebooks related to Doc2Vec have filenames beginning doc2vec-.

Related

Using Bert and cosine similarity fo identify similar documents

we have a news website where we have to match news to a particular user.
We have to use for the matching only the user textual information, like for example the interests of the user or a brief description about them.
I was thinking to threat both the user textual information and the news text as document and find document similarity.
In this way, I hope, that if in my profile I wrote sentences like: I loved the speach of the president in Chicago last year, and a news talks about: Trump is going to speak in Illinois I can have a match (the example is purely casual).
I tried, first, to embed my documents using TF-IDF and then I tried a kmeans to see if there was something that makes sense, but I don't like to much the results.
I think the problem derives from the poor embedding that TF-IDF gives me.
Thus I was thinking of using BERT embedding to retrieve the embedding of my documents and then use cosine similarity to check similarity of two document (a document about the user profile and a news).
Is this an approach that could make sense? Bert can be used to retrieve the embedding of sentences, but there is a way to embed an entire document?
What would you advice me?
Thank you
BERT is trained on pairs of sentences, therefore it is unlikely to generalize for much longer texts. Also, BERT requires quadratic memory with the length of the text, using too long texts might result in memory issues. In most implementations, it does not accept sequences longer than 512 subwords.
Making pre-trained Transformers work efficiently for long texts is an active research area, you can have a look at a paper called DocBERT to have an idea what people are trying. But it will take some time until there is a nicely packaged working solution.
There are also other methods for document embedding, for instance Gensim implements doc2vec. However, I would still stick with TF-IDF.
TF-IDF is typically very sensitive to data pre-processing. You certainly need to remove stopwords, in many languages it also pays off to do lemmatization. Given the specific domain of your texts, you can also try expanding the standard list of stop words by words that appear frequently in news stories. You can get further improvements by detecting and keeping together named entities.

Which additional features to use apart from Doc2Vec embeddings for Document Similarity?

So I am doing a project on document similarity and right now my features are only the embeddings from Doc2Vec. Since that is not showing any good results, after hyperparameter optimization and word embedding before the doc embedding... What other features can I add, so as to get better results?
My dataset is 150 documents, 500-700 words each, with 10 topics(labels), each document having one topic. Documents are labeled on a document level, and that labeling is currently used only for evaluation purposes.
Edit: The following is answer to gojomo's questions and elaborating on my comment on his answer:
The evaluation of the model is done on the training set. I am comparing if the label is the same as the most similar document from the model. For this I am first getting the document vector using the model's method 'infer_vector' and then 'most_similar' to get the most similar document. The current results I am getting are 40-50% of accuracy. A satisfactory score would be of at least 65% and upwards.
Due to the purpose of this research and it's further use case, I am unable to get a larger dataset, that is why I was recommended by a professor, as this is a university project, to add some additional features to the document embeddings of Doc2Vec. As I had no idea what he ment, I am asking the community of stackoverflow.
The end goal of the model is to do clusterization of the documents, again the labels for now being used only for evaluation purposes.
If I don't get good results with this model, I will try out the simpler ones mentioned by #Adnan S #gojomo such as TF-IDF, Word Mover's Distance, Bag of words, just presumed I would get better results using Doc2Vec.
You should try creating TD-IDF with 2 and 3 grams to generate a vector representation for each document. You will have to train the vocabulary on all the 150 documents. Once you have the TF-IDF vector for each document, you can use cosine similarity between any two of them.
Here is a blog article with more details and doc page for sklearn.
How are you evaluating the results as not good, and how will you know when your results are adequate/good?
Note that just 150 docs of 400-700 words each is a tiny, tiny dataset: typical datasets used published Doc2Vec results include tens-of-thousands to millions of documents, of hundreds to thousands of words each.
It will be hard for any of the Word2Vec/Doc2Vec/etc-style algorithms to do much with so little data. (The gensim Doc2Vec implementation includes a similar toy dataset, of 300 docs of 200-300 words each, as part of its unit-testing framework, and to eke out even vaguely useful results, it must up the number of training epochs, and shrink the vector size, significantly.)
So if intending to use Doc2Vec-like algorithms, your top priority should be finding more training data. Even if, in the end, only ~150 docs are significant, collecting more documents that use similar domain language can help improve the model.
It's unclear what you mean when you say there are 10 topics, and 1 topic per document. Are those human-assigned categories, and are those included as part of the training texts or tags passed to the Doc2Vec algorithm? (It might be reasonable to include it, depending on what your end-goals and document-similarity evaluations consist of.)
Are these topics the same as the labelling you also mention, and are you ultimately trying to predict the topics, or just using the topics as a check of the similarity-results?
As #adnan-s suggests in the other answer, it may also be worth trying more-simple count-based 'bag of words' document representations, including potentially on word n-grams or even character n-grams, or TF-IDF weighted.
If you have adequate word-vectors, as trained from your data or from other compatible sources, the "Word Mover's Distance" measure can be another interesting way to compute pairwise similarities. (However, it may be too expensive to calculate between many-hundred-word texts - working much faster on shorter texts.)
As others have already suggested your training set of 150 documents probably isn't big enough to create good representations. You could, however, try to use a pre-trained model and infer the vectors of your documents.
Here is a link where you can download a (1.4GB) DBOW model trained on English Wikipedia pages, working with 300-dimensional document vectors. I obtained the link from jhlau/doc2vec GitHub repository. After downloading the model you can use it as follows:
from gensim.models import Doc2Vec
# load the downloaded model
model_path = "enwiki_dbow/doc2vec.bin"
model = Doc2Vec.load(model_path)
# infer vector for your document
doc_vector = model.infer_vector(doc_words)
Where doc_words is a list of words in your document.
This, however, may not work for you in case your documents are very specific. But you can still give it a try.

Natural Language Processing in Python

How to find similar kind of issues for a new unseen issue based on past trained issues(includes summary and description of issue) using natural language processing in python
If I understand you correctly you have a new issue (query) and you want to look up other similar issues (documents) in your database. If so, then what you need is a way to find the similarity between your query and existing documents. And once you have them, you can rank them and select the most relevant ones. One such method that allows you to do this is Latent Semantic Indexing (LSI).
To do this you'll have to construct a document-term matrix. You'll use your existing document and create a term occurrence matrix across documents. What this means is that you basically record how many times a word appears in a document (or some other complex measure, example- tfidf). This can be done either through a bag of words representation or a TFIDF representation.
Once you have that, you'll have to process your query so that it is in the same form as your documents. Now that you have your query in usable form, you can calculate the cosine similarity between documents and your query. The one with the highest cosine similarity is the closest match.
Note: The topic that you may want to read about is Information Retrieval and LSI is just one such method. You should look into other methods as well.

load Doc2Vec model and get new sentence's vectors for test

I have read lots of examples regarding doc2vec, but I couldn't find any answer. Like a real example, I want to build a model with doc2vec and then train it with some ML models. after that, how can I get the vector of a raw string with the exact trained Doc2vec model? because I need to predict with my ML model with the same size and logical vector
There are a collection of example Jupyter (aka IPython) notebooks in the gensim docs/notebooks directory. You can view them online at:
https://github.com/RaRe-Technologies/gensim/tree/develop/docs/notebooks
But they'll be in your gensim installation directory, if you can find that for your current working environment.
Those that include doc2vec in their name demonstrate the use of the Doc2Vec class. The most basic intro operates on the 'Lee' corpus that's bundled with gensim for use in its unit tests. (It's really too small for real Doc2Vec success, but by forcing smaller models and many training iterations the notebook just barely manages to get some consistent results.) See:
https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/doc2vec-lee.ipynb
It includes a section on inferring a vector for a new text:
https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/doc2vec-lee.ipynb
Note that inference is performed on a list of string tokens, not a raw string. And those tokens should have been preprocessed/tokenized the same way as the original training data for the model, so that the vocabularies are compatible. (Any unknown words in a new text are silently ignored.)
Note also that especially on short texts, it often helps to provide a much-larger-than-default value of the optional steps parameter to infer_vector() - say 50 or 200 rather than the default 5. It may also help to provide a starting alpha parameter more like the training default of 0.025 than the method-default of 0.1.

TF - IDF vs only IDF

Is there any case when IDF is better than TF-IDF? As far I understood TF is important to give a weight to a word within a document to match that document with a predefined query. If I'd like just to sort the importance of words in a collection of documents without any specific IR purpose, why should I use the TF term?
TF in TF-IDF means frequency of a term in a document. In other words, TF-IDF is a measure for both the term and the document. Here is a good illustration of what I mean.
As far as I understand your case, you don't work with any particular document, instead you want to have some integral characteristic for each word over the whole document collection. So, you should use IDF (or simply DF, document frequency), if you want to find something like stop-words. See also for related question.

Resources