How do I compare values in two dataframe in an efficient way - python-3.x

df1
df2
I am new with python, pandas and Stack Overflow, so I will appreciate any help. I have two panda dataframes, the first one is in ascending order(values from 0 to 100 in steps of 0.1), the second one has 26000 values from 2.3 to 38.5, in no order, some values are also repeated in that dataframe. What I am trying to do is, for each value in the first dataframe, find how many values in the second dataframe are less than or equal to that value in an efficient way.
My code below does it in 45 seconds, but I'd like it to be done in around 10.
Thanks in advance:
Code:
def get_CDF2(df1, df2):
x=df1 #The first dataframe is already sorted in ascending order
y = np.sort(df2, axis=0) #Sort the columns of the second dataframe in ascending order
df_res = [] # keep the results here
yi = iter(y) # Use of an iterator to move over y
yindex = 0
flag = 0 #Flag, when set to 1 no comparison is done
y_val = next(yi)
for value in x:
if flag >=1:
df_res.append(largest_ind)#append the number of y_val smaller than value
#yindex+1
else:
# Search through y to find the index of an item bigger than value
while (y_val) <= (value) and yindex < len(y)-1:
y_val= next(yi) #Point at the next value in df2
yindex += 1 #Keep track of how many y_val are smaller than value
'''if for any value in df1 we iterate through the entire df2 and they are all less, that means
the rest of values in df1 will have the same effect since df1 is in ascending other, so no need to iterate again,
just set flag to 1'''
if ((yindex==len(y)-1)) and ((y_val <= float(value))):
flag=1
largest_ind=yindex+1
df_res.append(largest_ind)#append the number of y_val smaller than value
else:
df_res.append(yindex) #append the number of y_val smaller than value
return df_res
df1:
0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1. , 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,
1.8, 1.9, 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,
2.7, 2.8, 2.9, 3. , 3.1, 3.2, 3.3, 3.4, 3.5,
3.6, 3.7, 3.8, 3.9, 4. , 4.1, 4.2, 4.3, 4.4,
4.5, 4.6, 4.7, 4.8, 4.9, 5. , 5.1, 5.2, 5.3,
5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6. , 6.1, 6.2,
6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7. , 7.1,
7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8. ,
8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9,
9. , 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8,
9.9, 10. , 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7,
10.8, 10.9, 11. , 11.1, 11.2, 11.3, 11.4, 11.5, 11.6,
11.7, 11.8, 11.9, 12. , 12.1, 12.2, 12.3, 12.4, 12.5,
12.6, 12.7, 12.8, 12.9, 13. , 13.1, 13.2, 13.3, 13.4,
13.5, 13.6, 13.7, 13.8, 13.9, 14. , 14.1, 14.2, 14.3,
14.4, 14.5, 14.6, 14.7, 14.8, 14.9, 15. , 15.1, 15.2,
15.3, 15.4, 15.5, 15.6, 15.7, 15.8, 15.9, 16. , 16.1,
16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 16.8, 16.9, 17. ,
17.1, 17.2, 17.3, 17.4, 17.5, 17.6, 17.7, 17.8, 17.9,
18. , 18.1, 18.2, 18.3, 18.4, 18.5, 18.6, 18.7, 18.8,
18.9, 19. , 19.1, 19.2, 19.3, 19.4, 19.5, 19.6, 19.7,
19.8, 19.9, 20. , 20.1, 20.2, 20.3, 20.4, 20.5, 20.6,
20.7, 20.8, 20.9, 21. , 21.1, 21.2, 21.3, 21.4, 21.5,
21.6, 21.7, 21.8, 21.9, 22. , 22.1, 22.2, 22.3, 22.4,
22.5, 22.6, 22.7, 22.8, 22.9, 23. , 23.1, 23.2, 23.3,
23.4, 23.5, 23.6, 23.7, 23.8, 23.9, 24. , 24.1, 24.2,
24.3, 24.4, 24.5, 24.6, 24.7, 24.8, 24.9, 25. , 25.1,
25.2, 25.3, 25.4, 25.5, 25.6, 25.7, 25.8, 25.9, 26. ,
26.1, 26.2, 26.3, 26.4, 26.5, 26.6, 26.7, 26.8, 26.9,
27. , 27.1, 27.2, 27.3, 27.4, 27.5, 27.6, 27.7, 27.8,
27.9, 28. , 28.1, 28.2, 28.3, 28.4, 28.5, 28.6, 28.7,
28.8, 28.9, 29. , 29.1, 29.2, 29.3, 29.4, 29.5, 29.6
df2:
0 12.993
1 12.054
2 21.957
3 10.917
4 33.890
5 10.597
6 22.911
7 7.431
8 10.437
9 19.165
10 12.169
11 14.847
12 10.093
13 10.795
14 14.419
15 27.199
16 15.045
17 12.764
18 7.766
19 18.066
20 10.254
21 16.922
22 7.011
23 10.322
24 11.619
25 25.719
26 18.142
27 14.557
28 26.367
29 13.443
30 17.318
31 10.971
32 6.073
33 20.050
34 11.863
35 25.619
36 18.326
37 30.830
38 13.130
39 11.734
40 14.457
41 22.659
42 16.479
43 17.845
44 23.712
45 16.670
46 10.322
47 16.250
48 20.920
49 17.479
50 15.526
51 15.732
52 19.836
53 10.513
54 24.818
55 10.933
56 14.785
57 25.253
58 15.732
59 14.290
60 23.979
61 24.788
62 12.420
63 21.324
64 9.658
65 24.307
66 17.601
67 12.352
68 18.089
69 23.353
70 12.718
71 18.707
72 9.147
73 17.494
74 8.743
75 22.407
76 16.227
77 15.396
78 16.807
79 26.733
80 14.084
81 19.516
82 15.106
83 21.187
84 13.008
85 13.618
86 16.266
87 19.706
88 6.591
89 14.999
90 16.449
91 18.883
92 15.243
93 15.976
94 18.242
95 16.662
96 6.691
97 16.952
98 25.940
99 23.018
100 29.365
101 14.564
102 15.625
103 9.727
104 7.652
105 12.726
106 7.263
107 19.943
108 17.540
109 7.469
110 10.360
111 17.898
112 20.393
113 7.011
114 15.999
115 12.985
116 16.624
117 18.753
118 12.520
119 13.488
120 17.959
121 16.433
122 14.518
123 12.909
124 19.752
125 9.277
126 25.566
127 19.272
128 10.360
129 22.148
130 20.294
131 18.402
132 17.631
133 17.341
134 13.672
135 19.600
136 20.653
137 15.999
138 15.480
139 30.655
140 15.426
141 16.067
142 29.838
143 13.099
144 12.184
145 15.693
146 26.031
147 16.052
148 8.087
149 16.754
150 17.029
151 16.601
152 9.956
153 20.363
154 11.215
155 15.106
156 13.809
157 23.178
158 21.484
159 13.359
160 31.860
161 14.564
162 19.737
163 19.424
164 29.556
165 15.678
166 22.148
167 28.389
168 21.309
169 22.262
170 11.314
171 8.018
172 24.551
173 14.740
174 15.716
175 24.269
176 20.042
177 15.968
178 11.337
179 27.618
180 22.522
181 19.066
182 9.323
183 20.622
184 13.092
185 15.464
186 21.171
187 11.604
188 19.050
189 15.823
190 33.859
191 15.106
192 13.549
193 17.296
194 13.740
195 12.054
196 10.955
197 21.164
198 14.427
199 9.719
200 12.176
201 9.742
202 21.278
203 20.515
204 18.265
205 9.666
206 13.870
207 15.968
208 13.313
209 16.517
210 18.417
211 15.419
212 20.523
213 15.655
214 26.977
215 13.084
216 31.349
217 29.854
218 13.008
219 11.306
220 22.384
221 20.798
222 17.433
223 12.916
224 11.284
225 20.248
226 9.803
227 10.376
228 9.315
229 14.976
230 16.327
231 9.590
232 16.830
233 23.979
234 11.558
235 13.183
236 18.776
237 20.416
238 9.163
239 10.345
240 28.252
241 22.888
242 20.538
243 6.912
244 24.040
245 8.682
246 31.929
247 14.908
248 19.195
249 17.112
250 18.379
251 15.869
252 13.794
253 14.129
254 12.458
255 10.795
256 25.291
257 26.382
258 20.881

Try this. It will add a column called check to df1. The column will contain the count of the values in df2 that are <= each value in df1.
df1['check'] = df1[0].apply(lambda x: df2[df2[0] <= x].size)
You may have to replace the [0] with the names of the first column in your data frames.

Related

Retaining bad_lines identified by pandas in the output file instead of skipping those lines

I have to convert text files into csv's after processing the contents of the text file as pandas dataframe.
Below is the code i am using. out_txt is my input text file and out_csv is my output csv file.
df = pd.read_csv(out_txt, sep='\s', header=None, on_bad_lines='warn', encoding = "ANSI")
df = df.replace(r'[^\w\s]|_]/()|~"{}="', '', regex=True)
df.to_csv(out_csv, header=None)
If "on_bad_lines = 'warn'" is not decalred the csv files are not created. But if i use this condition those bad lines are getting skipped (obviously) with the warning
Skipping line 6: Expected 8 fields in line 7, saw 9. Error could possibly be due to quotes being ignored when a multi-char delimiter is used.
I would like to retain these bad lines in the csv. I have highlighted the bad lines detected in the below image (my input text file).
Below is the contents of the text file which is getting saved. In this content i would like to remove characters like #, &, (, ).
75062 220 8 6 110 220 250 <1
75063 260 5 2 584 878 950 <1
75064 810 <2 <2 456 598 3700 <1
75065 115 5 2 96 74 5000 <1
75066 976 <5 2 5 68 4200 <1
75067 22 210 4 348 140 4050 <1
75068 674 5 4 - 54 1130 3850 <1
75069 414 5 y) 446 6.6% 2350 <1
75070 458 <5 <2 548 82 3100 <1
75071 4050 <5 2 780 6430 3150 <1
75072 115 <7 <1 64 5.8% 4050 °#&4«x<i1
75073 456 <7 4 46 44 3900 <1
75074 376 <7 <2 348 3.8% 2150 <1
75075 378 <6 y) 30 40 2000 <1
I would split on \s later with str.split rather than read_csv :
df = (
pd.read_csv(out_txt, header=None, encoding='ANSI')
.replace(r'[^\w\s]|_]/()|~"{}="', '', regex=True)
.squeeze().str.split(expand=True)
)
Another variant (skipping everything that comes in-between the numbers):
df = (
pd.read_csv(out_txt, header=None, encoding='ANSI')
[0].str.findall(r"\b(\d+)\b"))
.str.split(expand=True)
)
​
Output :
print(df)
0 1 2 3 4 5 6 7
0 375020 1060 115 38 440 350 7800 1
1 375021 920 80 26 310 290 5000 1
2 375022 1240 110 28 460 430 5900 1
3 375023 830 150 80 650 860 6200 1
4 375024 185 175 96 800 1020 2400 1
5 375025 680 370 88 1700 1220 172 1
6 375026 550 290 72 2250 1460 835 2
7 375027 390 120 60 1620 1240 158 1
8 375028 630 180 76 820 1360 180 1
9 375029 460 280 66 380 790 3600 1
10 375030 660 260 62 11180 1040 300 1
11 375031 530 200 84 1360 1060 555 1

Gnuplot fit error - singular matrix in Givens()

So I want to fit a function with a dataset using gnuplot. In the file "cn20x2012", at the lines [1:300] I have this data:
1 -7.576723949519277e-06
2 4.738414366971162e-05
3 2.5908117324519247e-05
4 7.233786749999952e-06
5 4.94720225240387e-06
6 -1.857620375000113e-06
7 5.697280584855734e-06
8 -1.867760712716345e-05
9 6.64096591257211e-05
10 2.756199717307687e-05
11 4.7755705550480866e-05
12 6.590865376225963e-05
13 4.1522206877403805e-05
14 3.145294946394234e-05
15 5.9346948090625035e-05
16 5.405458204471163e-05
17 0.0001484469089218749
18 0.00011236895265264405
19 0.00010798644697620197
20 8.656723035552881e-05
21 0.00019917737876442313
22 0.00022625750686778835
23 0.00023183354141658626
24 0.0003373178915148073
25 0.00032313619574999994
26 0.0003451188893915866
27 0.0003303809005983172
28 0.0003534148565745192
29 0.00039690566743750015
30 0.0004182810016802884
31 0.00045198626877403865
32 0.00047311462195192373
33 0.0004962054400408655
34 0.0004969566757524037
35 0.0005561838221274039
36 0.0005353567324539659
37 0.00052834133201923
38 0.0005980226227637016
39 0.0005446277144831731
40 0.0005960780049278846
41 0.0006076488594567314
42 0.000710219997610289
43 0.0006714079307259616
44 0.0006990041531870184
45 0.000694646402266827
46 0.0006910307645889419
47 0.0007918124250492787
48 0.0007699669760728367
49 0.0007850042712259613
50 0.0007735240355776444
51 0.0008333605652980768
52 0.0007914544977620185
53 0.0008254284036610573
54 0.0008578590784536057
55 0.0008597165395913466
56 0.0009350752655120189
57 0.0009355867078822116
58 0.0009413161534519229
59 0.001003045837043269
60 0.0009530084342740383
61 0.000981287851927885
62 0.000986143934318509
63 0.00096895140692548
64 0.0010671633388319713
65 0.0010884129846995196
66 0.0010974424039567304
67 0.0011198829067163459
68 0.0010649422789374995
69 0.0010909547135769227
70 0.0010858300892451934
71 0.00114890178018774
72 0.0011503018930817308
73 0.0012209814370937495
74 0.001264080502711538
75 0.0012453762294132222
76 0.0012725116258625
77 0.0012649334953990384
78 0.0012195748153341352
79 0.0013151443892213466
80 0.0013003322635283651
81 0.0013099768888799042
82 0.0013227992394807694
83 0.0013325137669168274
84 0.001356943212587259
85 0.0014541924819278852
86 0.0014094004314177883
87 0.0014273633669975969
88 0.0014393176087403859
89 0.0014372794673365393
90 0.0015051545220959143
91 0.0015432813234807683
92 0.0015832276965293275
93 0.001540622433288461
94 0.0016007491118125
95 0.0016195978358533654
96 0.0016447077023067317
97 0.0016350138695504803
98 0.0017352804136629807
99 0.001731106189370192
100 0.0017407015898704323
101 0.0017367582300937506
102 0.0018164239404875008
103 0.0017829769448653838
104 0.0018303930988165871
105 0.0017893320000211548
106 0.0018727349292259614
107 0.0018745909637668267
108 0.0018425366172147846
109 0.0019053739892581727
110 0.0018849885474855762
111 0.0018689524590103368
112 0.0019431807910961535
113 0.001951890517350962
114 0.0019308973497776446
115 0.0019990349471177894
116 0.002009245176572116
117 0.0020004240575882213
118 0.002020795320423557
119 0.0020148423748725963
120 0.002070277553975961
121 0.002112121992170673
122 0.002081609846093749
123 0.0020899822853341346
124 0.002214996736841347
125 0.002210968677028846
126 0.002204230691923077
127 0.0022059340675168264
128 0.002244672249610577
129 0.002243725570633895
130 0.002198417606970913
131 0.002326686848007212
132 0.002298981945014423
133 0.002412905193465384
134 0.0023317473012668287
135 0.0023255737818221145
136 0.0024042900543605767
137 0.0023814333208341345
138 0.002414946342495192
139 0.002451134140336538
140 0.002435468088014424
141 0.002541540709086779
142 0.0024759180712812523
143 0.002562872725209133
144 0.002554363054353367
145 0.002525350243064904
146 0.0026228594448966342
147 0.002640361090600963
148 0.0026968734518557683
149 0.002687729582449518
150 0.0026799173813848555
151 0.002751626483175481
152 0.0026916526068317286
153 0.002682602742860577
154 0.0027658840884567304
155 0.0028385319315024035
156 0.002733288245524039
157 0.002805041072350961
158 0.002798724552451201
159 0.00284738398885577
160 0.002833892571264423
161 0.0028506943730673084
162 0.0028578405825413463
163 0.0028141271324870197
164 0.0029047532288887
165 0.002916689246838943
166 0.003006111659274039
167 0.0030388357088942325
168 0.0030117903270181707
169 0.003023639132084136
170 0.0030182642660336535
171 0.0029788478969250015
172 0.003086049268993511
173 0.0030530940010240377
174 0.00309287048297596
175 0.0030892688902187473
176 0.0032070964353437493
177 0.0031308958387163454
178 0.003262165689711538
179 0.0032348496648947093
180 0.003334092027257212
181 0.0032702121678230764
182 0.0032887867663149036
183 0.00333782536743269
184 0.0033132179587812513
185 0.003400563164048078
186 0.003322215536028365
187 0.0033691419445264436
188 0.00340692471343654
189 0.003370118822997599
190 0.003414042435545674
191 0.003460621729710913
192 0.003487680921019232
193 0.0034814484875360595
194 0.003528280852358173
195 0.0035260558732403864
196 0.0035947047098653846
197 0.003583761358336538
198 0.003589446784643749
199 0.0035488957604610572
200 0.0036106514596322115
201 0.003633161542855769
202 0.003596668943564904
203 0.003621647520017789
204 0.0037260161142259616
205 0.0036873544761057684
206 0.003693311409786057
207 0.0037485618958747594
208 0.0037277801700697126
209 0.003731768419286058
210 0.0037200943660144225
211 0.0037368698886754786
212 0.0038266932486634626
213 0.003786905602120193
214 0.0038484308669038464
215 0.003837662506102065
216 0.003877989966946875
217 0.0038711451977908673
218 0.0039796825709810125
219 0.003955763375971154
220 0.003983664920576924
221 0.004019112007471154
222 0.003996646585913461
223 0.004061509550884613
224 0.004015245551199519
225 0.004009779120920672
226 0.004148229009661058
227 0.0040645974335312505
228 0.0041522345293678545
229 0.004216267765944711
230 0.004191517977733654
231 0.004280319721466346
232 0.004210795761447114
233 0.004258393462563462
234 0.004267925011272355
235 0.00427713419340625
236 0.004323331966394231
237 0.004361159201735935
238 0.004351708975694715
239 0.004359997178644953
240 0.00437384325853894
241 0.004375188742463941
242 0.004424559629495192
243 0.004461955226487498
244 0.004489655863850963
245 0.0045503420149230756
246 0.0045185560829999975
247 0.004506067166336778
248 0.004585396025798076
249 0.004530840472406252
250 0.0045934151490120215
251 0.004602146584228363
252 0.004643262102497593
253 0.004707265035608172
254 0.004766505116052884
255 0.004744165929896635
256 0.0047756718030625015
257 0.004802170611427885
258 0.004896239463478368
259 0.0048845448341901425
260 0.004845213594302884
261 0.004915008781204327
262 0.004838528640802884
263 0.0048121374747617796
264 0.004895357859576925
265 0.0048793476575266816
266 0.004958465852682693
267 0.005007965180538941
268 0.0049839032653341345
269 0.005068383734646637
270 0.00498556504900495
271 0.005014623260019232
272 0.005066327855785335
273 0.0050290740743365375
274 0.005152934708140861
275 0.005174238921781968
276 0.005123581464772355
277 0.005155969777822114
278 0.005169396608004327
279 0.00516497090489663
280 0.005145110646115385
281 0.005209611399110575
282 0.005163211771749997
283 0.005181044847507209
284 0.005281641245183894
285 0.005323840847189907
286 0.005230924322329326
287 0.005256136984014422
288 0.005374876757439424
289 0.0053137727444009615
290 0.005468482116127402
291 0.005453857539401205
292 0.005417081656274039
293 0.005393994523838937
294 0.005506909240446873
295 0.005449365350307692
296 0.005551215606367787
297 0.005505932791992786
298 0.0055918512302572145
299 0.005663100163579326
300 0.0056382443690432705
When I do
f(x) = a/b*(1-exp(-b*x))
fit[1:300] f(x) "cn20x2012" using 1:2 via a,b
The curve fits perfectly. But when I try to fit the curve with
a/b*(1-exp(-b*x/(3e-26))
I get the error message. Note that I've only added a constant to the exponential part of the function.
What can I do to fit the function with the constant 3e-26?
I'm using gnuplot 5.2 patchlevel 8 on linux
Adding that constant makes the values of exp(-b*x/(3.e-26) so close to zero that the term (1-exp(-b*x/(3e-26)) differs from 1 by less than the precision available for IEEE double precision floating point numbers. So you are essentially fitting the function g(x) = a/b, which is a very poor fit to your data.
Since you already have a good fit using your original function f(x), perhaps you can explain what your goal is to change the function to something else? What question are you trying to answer?

Rescaling the plot of a tree with gnuplot

I am using the following code in gnuplot to draw a tree from different inputs.
### tree diagram with gnuplot
reset session
#ID Parent Name Colors shape
# put datablock into strings
IDs = Parents = Names = Colors = Shape = ""
set table $Dummy
plot "tmp.dat" u (IDs = IDs.strcol(1)." "): \
(Parents = Parents.strcol(2)." "): \
(Names = Names.strcol(3)." "): \
(Colors = Colors.strcol(4)." "): \
(Shape = Shape.strcol(5)." ") w table
unset table
# Top node has no parent ID "NaN"
Start(n) = int(sum [i=1:words(Parents)] (word(Parents,i) eq "NaN" ? int(word(IDs,i)) : 0))
# get list index by ID
ItemIdx(s,n) = n == n ? (tmp=NaN, sum [i=1:words(s)] ((word(s,i)) == n ? (tmp=i,0) : 0), tmp) : NaN
# get parent of ID n
Parent(n) = word(Parents,ItemIdx(IDs,n))
# get level of ID n, recursive function
Level(n) = n == n ? Parent(n)>0 ? Level(Parent(n))-1 : 0 : NaN
# get number of children of ID n
ChildCount(n) = int(sum [i=1:words(Parents)] (word(Parents,i)==n))
# Create child list of ID n
ChildList(n) = (Ch = " ", sum [i=1:words(IDs)] (word(Parents,i)==n ? (Ch = Ch.word(IDs,i)." ",1) : (Ch,0) ), Ch )
# m-th child of ID n
Child(n,m) = word(ChildList(n),m)
# List of leaves, recursive function
LeafList(n) = (LL="", ChildCount(n)==0 ? LL=LL.n." " : sum [i=1:ChildCount(n)]
(LL=LL.LeafList(Child(n,i)), 0),LL)
# create list of all leaves
LeafAll = LeafList(Start(0))
# get x-position of ID n, recursive function
XPos(n) = ChildCount(n) == 0 ? ItemIdx(LeafAll,n) : (sum [i=1:ChildCount(n)](XPos(Child(n,i))))/(ChildCount(n))
# create the tree datablock for plotting
set print $Tree
do for [j=1:words(IDs)] {
n = int(word(IDs,j))
print sprintf("% 3d % 7.2f % 4d % 5s % 8s", n, XPos(n), Level(n), word(Names,j), word(Colors,j))
}
set print
print $Tree
# get x and y distance from ID n to its parent
dx(n) = XPos(Parent(int(n))) - XPos(int(n))
dy(n) = Level(Parent(int(n))) - Level(int(n))
unset border
unset tics
set offsets 0.25, 0.25, 0.25, 0.25
array shape[words(IDs)] # pointtype 6 = circle, pointtype 4 = square
array color[words(IDs)]
do for [i=1:words(IDs)] {
color[i] = int(word(Colors,i))
shape[i] = int(word(Shape,i))
print sprintf("color[%2d] = %d",i,color[i])
}
plot $Tree u 2:3:(dx($1)):(dy($1)) w vec nohead ls -1 not,\
"" u 2:3:(shape[$1]+1):(color[$1]) w p pt variable ps 6 lc rgb variable not, \
"" u 2:3:(shape[$1]) w p pt variable ps 6 lw 1.5 lc rgb "black" not, \
"" u 2:3:4 w labels offset 0,0.1 center not
### end of code
for a small dataset like this one, the output works perfect
1 2.00 0 y_{45} 0xFE1034
2 1.00 -1 - 0x118C4B
3 2.99 -1 y_{37} 0xFE1034
4 2.00 -2 - 0xC6C1C1
5 3.98 -2 y_{13} 0xFE1034
6 3.00 -3 - 0x118C4B
7 4.97 -3 y_{14} 0xFE1034
8 4.00 -4 - 0x118C4B
9 5.94 -4 y_{20} 0xFE1034
10 5.00 -5 - 0xC6C1C1
11 6.88 -5 y_{27} 0xFE1034
12 6.00 -6 - 0xC6C1C1
13 7.75 -6 y_{41} 0xFE1034
14 7.00 -7 - 0xC6C1C1
15 8.50 -7 y_{54} 0xFE1034
16 8.00 -8 - 0xC6C1C1
17 9.00 -8 - 0xC6C1C1
But, for larger datasets the tree becomes cramped, the nodes overlap, and looks ugly.
Moreover, when there are more than a few hundred nodes like below, I get a stack overflow error and the plot does not appear. The error comes from this line
LeafAll = LeafList(Start(0))
Any help with this will be appreciated.
1 NaN y_{295} 0xFE1034 6
2 1 x_{0} 0x33B2FF 6
3 1 y_{1285} 0xFE1034 6
4 2 - 0xC6C1C1 8
5 2 - 0xC6C1C1 8
6 3 x_{3} 0x33B2FF 6
7 3 y_{18} 0xFE1034 6
8 6 - 0xC6C1C1 8
9 6 - 0xC6C1C1 8
10 7 x_{13} 0x33B2FF 6
11 7 y_{21} 0xFE1034 6
12 10 - 0xC6C1C1 8
13 10 - 0xC6C1C1 8
14 11 x_{10} 0x33B2FF 6
15 11 y_{50} 0xFE1034 6
16 14 - 0xC6C1C1 8
17 14 - 0xC6C1C1 8
18 15 - 0x118C4B 4
19 15 y_{62} 0xFE1034 6
20 19 - 0xC6C1C1 8
21 19 y_{48} 0xFE1034 6
22 21 x_{41} 0x33B2FF 6
23 21 y_{1839} 0xFE1034 6
24 22 - 0xC6C1C1 8
25 22 - 0xC6C1C1 8
26 23 - 0xC6C1C1 8
27 23 y_{44} 0xFE1034 6
28 27 x_{12} 0x33B2FF 6
29 27 y_{15} 0xFE1034 6
30 28 - 0xC6C1C1 8
31 28 - 0xC6C1C1 8
32 29 x_{58} 0x33B2FF 6
33 29 y_{127} 0xFE1034 6
34 32 - 0xC6C1C1 8
35 32 - 0xC6C1C1 8
36 33 - 0xC6C1C1 8
37 33 y_{60} 0xFE1034 6
38 37 - 0xC6C1C1 8
39 37 y_{1825} 0xFE1034 6
40 39 - 0xC6C1C1 8
41 39 y_{1878} 0xFE1034 6
42 41 - 0xC6C1C1 8
43 41 y_{33} 0xFE1034 6
44 43 - 0xC6C1C1 8
45 43 y_{3} 0xFE1034 6
46 45 - 0xC6C1C1 8
47 45 y_{1435} 0xFE1034 6
48 47 - 0xC6C1C1 8
49 47 y_{218} 0xFE1034 6
50 49 - 0xC6C1C1 8
51 49 y_{20} 0xFE1034 6
52 51 - 0xC6C1C1 8
53 51 y_{13} 0xFE1034 6
54 53 - 0xC6C1C1 8
55 53 y_{47} 0xFE1034 6
56 55 - 0xC6C1C1 8
57 55 y_{2321} 0xFE1034 6
58 57 - 0xC6C1C1 8
59 57 y_{28} 0xFE1034 6
60 59 - 0xC6C1C1 8
61 59 y_{52} 0xFE1034 6
62 61 - 0xC6C1C1 8
63 61 y_{2410} 0xFE1034 6
64 63 - 0xC6C1C1 8
65 63 y_{1751} 0xFE1034 6
66 65 - 0xC6C1C1 8
67 65 y_{186} 0xFE1034 6
68 67 - 0xC6C1C1 8
69 67 y_{1850} 0xFE1034 6
70 69 - 0xC6C1C1 8
71 69 y_{491} 0xFE1034 6
72 71 - 0xC6C1C1 8
73 71 y_{23} 0xFE1034 6
74 73 - 0xC6C1C1 8
75 73 y_{0} 0xFE1034 6
76 75 x_{52} 0x33B2FF 6
77 75 y_{1110} 0xFE1034 6
78 76 - 0xC6C1C1 8
79 76 - 0xC6C1C1 8
80 77 - 0xC6C1C1 8
81 77 y_{57} 0xFE1034 6
82 81 - 0xC6C1C1 8
83 81 y_{12} 0xFE1034 6
84 83 - 0xC6C1C1 8
85 83 y_{1269} 0xFE1034 6
86 85 - 0xC6C1C1 8
87 85 y_{1278} 0xFE1034 6
88 87 - 0x118C4B 4
89 87 y_{63} 0xFE1034 6
90 89 - 0xC6C1C1 8
91 89 y_{1338} 0xFE1034 6
92 91 - 0xC6C1C1 8
93 91 y_{1271} 0xFE1034 6
94 93 - 0xC6C1C1 8
95 93 y_{41} 0xFE1034 6
96 95 - 0xC6C1C1 8
97 95 y_{65} 0xFE1034 6
98 97 - 0x118C4B 4
99 97 y_{1630} 0xFE1034 6
100 99 - 0xC6C1C1 8
101 99 y_{2068} 0xFE1034 6
102 101 - 0xC6C1C1 8
103 101 y_{2532} 0xFE1034 6
104 103 - 0xC6C1C1 8
105 103 y_{1760} 0xFE1034 6
106 105 - 0xC6C1C1 8
107 105 y_{188} 0xFE1034 6
108 107 - 0xC6C1C1 8
109 107 y_{2405} 0xFE1034 6
110 109 - 0xC6C1C1 8
111 109 y_{1867} 0xFE1034 6
112 111 - 0xC6C1C1 8
113 111 y_{1482} 0xFE1034 6
114 113 - 0xC6C1C1 8
115 113 y_{79} 0xFE1034 6
116 115 - 0xC6C1C1 8
117 115 y_{11} 0xFE1034 6
118 117 - 0xC6C1C1 8
119 117 y_{5226} 0xFE1034 6
120 119 - 0xC6C1C1 8
121 119 y_{354} 0xFE1034 6
122 121 - 0xC6C1C1 8
123 121 y_{2748} 0xFE1034 6
124 123 - 0xC6C1C1 8
125 123 y_{27} 0xFE1034 6
126 125 - 0xC6C1C1 8
127 125 y_{426} 0xFE1034 6
128 127 - 0xC6C1C1 8
129 127 y_{12571} 0xFE1034 6
130 129 - 0xC6C1C1 8
131 129 y_{5089} 0xFE1034 6
132 131 - 0xC6C1C1 8
133 131 y_{2490} 0xFE1034 6
134 133 - 0xC6C1C1 8
135 133 y_{1752} 0xFE1034 6
136 135 - 0xC6C1C1 8
137 135 y_{1874} 0xFE1034 6
138 137 - 0xC6C1C1 8
139 137 y_{370} 0xFE1034 6
140 139 - 0xC6C1C1 8
141 139 y_{1453} 0xFE1034 6
142 141 - 0xC6C1C1 8
143 141 y_{2756} 0xFE1034 6
144 143 - 0xC6C1C1 8
145 143 y_{545} 0xFE1034 6
146 145 - 0xC6C1C1 8
147 145 y_{36} 0xFE1034 6
148 147 - 0xC6C1C1 8
149 147 y_{2409} 0xFE1034 6
150 149 - 0xC6C1C1 8
151 149 y_{96} 0xFE1034 6
152 151 - 0xC6C1C1 8
153 151 y_{82} 0xFE1034 6
154 153 - 0xC6C1C1 8
155 153 y_{1788} 0xFE1034 6
156 155 - 0xC6C1C1 8
157 155 y_{2812} 0xFE1034 6
158 157 - 0xC6C1C1 8
159 157 y_{10357} 0xFE1034 6
160 159 - 0xC6C1C1 8
161 159 y_{1801} 0xFE1034 6
162 161 - 0xC6C1C1 8
163 161 y_{55} 0xFE1034 6
164 163 - 0xC6C1C1 8
165 163 y_{2868} 0xFE1034 6
166 165 - 0xC6C1C1 8
167 165 y_{453} 0xFE1034 6
168 167 - 0xC6C1C1 8
169 167 y_{31} 0xFE1034 6
170 169 - 0xC6C1C1 8
171 169 y_{1281} 0xFE1034 6
172 171 - 0xC6C1C1 8
173 171 y_{17} 0xFE1034 6
174 173 - 0xC6C1C1 8
175 173 y_{1748} 0xFE1034 6
176 175 - 0xC6C1C1 8
177 175 y_{58} 0xFE1034 6
178 177 - 0xC6C1C1 8
179 177 y_{2420} 0xFE1034 6
180 179 - 0xC6C1C1 8
181 179 y_{7128} 0xFE1034 6
182 181 - 0xC6C1C1 8
183 181 y_{11164} 0xFE1034 6
184 183 - 0xC6C1C1 8
185 183 y_{1820} 0xFE1034 6
186 185 - 0xC6C1C1 8
187 185 y_{1713} 0xFE1034 6
188 187 - 0xC6C1C1 8
189 187 y_{387} 0xFE1034 6
190 189 - 0xC6C1C1 8
191 189 y_{5253} 0xFE1034 6
192 191 - 0xC6C1C1 8
193 191 y_{1699} 0xFE1034 6
194 193 - 0xC6C1C1 8
195 193 - 0xC6C1C1 8
The depth of gnuplot's evaluation stack is capped at at 250 to prevent run-away recursion. In order to increase that you would have to edit the source and recompile the program. If you really want to do that, the relevant definition is here:
[gnuplot-5.2.8/src] grep -n -A 3 -B 3 STACK_DEPTH eval.h
44-
45-#include <stdio.h> /* for FILE* */
46-
47:#define STACK_DEPTH 250 /* maximum size of the execution stack */
48-#define MAX_AT_LEN 150 /* max number of entries in action table */
49-
50-/* These are used by add_action() to index the subroutine list ft[] in eval.c */
I have not looked at your recursion algorithm very closely, but I would think it possible to re-order the evaluation so that the subtree information is computed bottom-up rather than top-down. In that direction it may become purely an iteration rather than a recursive descent.
On the other hand you also say that larger trees don't fit into a single plot. So another approach may be to split the tree at a depth that both fits on the page and doesn't exceed the stack depth. Then you restart the process over again for each node that was truncated, and mark that node with an arrow or annotation or other indication like "subtree continued in figure 1b". Here I have hand-mangled your large figure to show the idea

Generating all the combinations of 7 columns in a dataframe and add the corresponding rows to generate new columns

I have a dataframe that looks similar to below:
Wave A B C
340 77 70 15
341 80 73 15
342 83 76 16
343 86 78 17
I want to generate columns that will have all the possible combinations of the existing columns. I showed 3 cols here but in my actual data, I have 7 columns and therefore 127 total combinations. The desired output is as follows:
Wave A B C AB AC AD BC ... ABC
340 77 70 15 147 92 ...
341 80 73 15 153 95 ...
342 83 76 16 159 99 ...
I implemented a quite inefficient version where the user inputs the combinations (AB, AC, etc.) and a new col is created with the sum of the rows. This seems almost impossible to accomplish for 127 combinations, esp with descriptive col names.
Create a list of all combinations with chain + combinations from itertools, then sum the appropriate columns:
from itertools import combinations, chain
cols = [*df.iloc[:,1:]]
l = list(chain.from_iterable(combinations(cols, n+2) for n in range(len(cols))))
#[('A', 'B'), ('A', 'C'), ('B', 'C'), ('A', 'B', 'C')]
for items in l:
df[''.join(items)] = df.loc[:, items].sum(1)
Wave A B C AB AC BC ABC
0 340 77 70 15 147 92 85 162
1 341 80 73 15 153 95 88 168
2 342 83 76 16 159 99 92 175
3 343 86 78 17 164 103 95 181
You need to get the all combination first , then we just get the combination , and we need create the maps dict or Series
l=df.columns[1:].tolist()
l1=[list(map(list, itertools.combinations(l, i))) for i in range(len(l) + 1)]
d=[dict.fromkeys(y,''.join(y))for x in l1 for y in x ]
maps=pd.Series(d).apply(pd.Series).stack()
df.set_index('Wave',inplace=True)
df=df.reindex(columns=maps.index.get_level_values(1))
#here using reindex , get the order of your new df to the maps keys
df.columns=maps.tolist()
# here assign the new value to the column , since the order is same that why here I am assign it back
df.sum(level=0,axis=1)
Out[303]:
A B C AB AC BC ABC
Wave
340 77 70 15 147 92 85 162
341 80 73 15 153 95 88 168
342 83 76 16 159 99 92 175
343 86 78 17 164 103 95 181

Have one query regarding sum if formula

I am working in excel using SUMIF formula, my data is as follows:
Region Opr Qty Cost Combo(col B&A)
192 114 50 500 104192
192 104 453 548 104192
192 114 125 54654 114192
192 114 155 1545 114192
192 124 12 1553 124192
192 134 12222 1554545 134192
192 174 256 15478 174192
192 104 12 1555 104192
192 104 210 1156 104192
192 114 47 448953 114192
192 114 29 59479 114192
192 124 124 32451 124192
192 134 114 290240 134192
4192 10 210 115656 104192
4192 10 47 44896 104192
4192 11 29 12866 114192
4192 11 549 290240 114192
4192 12 124 59480 124192
4192 13 114 61343 134192
4192 17 310 45339 174192
4192 10 56 32451 104192
4192 10 103 82483 104192
4192 11 685 111380 114192
4192 11 646 201858 114192
4192 12 26 6489 124192
4192 13 87 44543 134192
If you see the last column it's giving same combination result but the operator and region are not always the same. I want to do SUMIF against Region which is throwing wrong values.
You can try SUMPRODUCT:
=SUMPRODUCT(((B2:B27&A2:A27)*1<>E2:E27)*1)
If the concatenation of column B to A is not equal to the Combo, count as 1, then add all the 1 together in SUMPRODUCT.
Change the range accordingly.
The *1 convert any text to number.

Resources