Model of writing a block of data to memory - alloy

I created an Alloy model of writing a block of data to a memory of fixed size. See below. The instances that the Alloy Analyzer generates all contain blocks of size one (i.e., blocks that have one data) or less. I would like the Alloy Analyzer to generate instances with blocks of size two. So, I added this to the writeBlock predicate: #block = 2. This is the updated predicate:
pred writeBlock (m, m': Memory, block: set Data) {
some addrs: set m.data.Data {
#addrs = #block
#block = 2 // I added this
m'.data = m.data ++ (addrs -> block)
}
}
But then the Analyzer says "No instances found."
Why?
Why are there no instances?
module fixedSizeMemory [Addr, Data]
sig Memory {
data: Addr -> one Data
}
// Write a block of data to memory.
pred writeBlock (m, m': Memory, block: set Data) {
some addrs: set m.data.Data {
#addrs = #block
m'.data = m.data ++ (addrs -> block)
}
}
pred Show {}
run writeBlock
Update: I figured out why there are no instances when #block = 2 is added. The problem is with (addrs -> block). That says: take all permutations of addrs values and block values. So, if there are 2 addrs value and 2 block values, then there will be 4 permutations. The data relation says that each Addr value maps to one Data value. But the 4 permutations will violate that constraint. The only blocks that don't violate the relation are those blocks of size 1 or 0.
Update#2: I solved the problem. Here is Alloy code to write a block of memory:
// Write a block of data to memory. That is,
// overwrite the data at a set of addresses
// with values in block.
pred writeBlock (m, m': Memory, block: set Data) {
// Non-deterministically select a subset
// of m's addresses to be overwritten.
some addresses: set m.data.Data {
// The chunk of memory overwritten
// matches the size of the block.
#addresses = #block
// Create a temporary relation, mapping.
// It defines a mapping from each address
// selected above to a block value. The
// relation is 1:1. That is, each address is
// assigned a value from block, and each
// value in block is associated to an address.
some mapping: addresses one -> one block {
// Overwrite the selected portion of memory
// with mapping.
m'.data = m.data ++ mapping
// This is so cool!
}
}
}

Related

Limitations of params, saved and session DML declarations

How much data can be processed using params, saved and session declarations?
How do these declaration affect performance and memory allocation/consumption (stack usage, data copy, etc.)?
What methods can be used in case of static/dynamic arrays with 10k-100k elements?
Params
An untyped param is expanded like a macro any time it is referenced, so resource consumption depends on its use. If you have a param with a large amount of data, then it usually means that the value is a compile-time list ([...]) with many elements, and you use a #foreach loop to process it. A #foreach loop is always unrolled, which gives long compile times and large generated code.
If a param is typed in a template, then that template evaluates the param once and stores a copy in heap-allocated memory. The data is shared between all instances of the device. Cost should be negligible.
Session
Data is heap-stored, one copy per device instance.
Saved
Pretty much like data, but adds a presumably negligible small per-module cost for attribute registration.
There's two more variants of data:
Constant C tables
header %{ const int data[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; %}
extern const int data;
Creates one super-cheap module-local instance.
Independent startup memoized method
independent startup memoized method data() -> (const int *) {
int *ret = new int[10];
for (local int i = 0; i < 10; i++) {
ret[i] = i;
}
return ret;
}
The data will be heap-allocated, initialized once, and shared across instances. Initialization is done by code, which saves size if it's easy to express the data programmatically, but can be cumbersome if it's just a table of irregular data.

Python Recursion Alternatives for Training a Robot [duplicate]

I've used recursion quite a lot on my many years of programming to solve simple problems, but I'm fully aware that sometimes you need iteration due to memory/speed problems.
So, sometime in the very far past I went to try and find if there existed any "pattern" or text-book way of transforming a common recursion approach to iteration and found nothing. Or at least nothing that I can remember it would help.
Are there general rules?
Is there a "pattern"?
Usually, I replace a recursive algorithm by an iterative algorithm by pushing the parameters that would normally be passed to the recursive function onto a stack. In fact, you are replacing the program stack by one of your own.
var stack = [];
stack.push(firstObject);
// while not empty
while (stack.length) {
// Pop off end of stack.
obj = stack.pop();
// Do stuff.
// Push other objects on the stack as needed.
...
}
Note: if you have more than one recursive call inside and you want to preserve the order of the calls, you have to add them in the reverse order to the stack:
foo(first);
foo(second);
has to be replaced by
stack.push(second);
stack.push(first);
Edit: The article Stacks and Recursion Elimination (or Article Backup link) goes into more details on this subject.
Really, the most common way to do it is to keep your own stack. Here's a recursive quicksort function in C:
void quicksort(int* array, int left, int right)
{
if(left >= right)
return;
int index = partition(array, left, right);
quicksort(array, left, index - 1);
quicksort(array, index + 1, right);
}
Here's how we could make it iterative by keeping our own stack:
void quicksort(int *array, int left, int right)
{
int stack[1024];
int i=0;
stack[i++] = left;
stack[i++] = right;
while (i > 0)
{
right = stack[--i];
left = stack[--i];
if (left >= right)
continue;
int index = partition(array, left, right);
stack[i++] = left;
stack[i++] = index - 1;
stack[i++] = index + 1;
stack[i++] = right;
}
}
Obviously, this example doesn't check stack boundaries... and really you could size the stack based on the worst case given left and and right values. But you get the idea.
It seems nobody has addressed where the recursive function calls itself more than once in the body, and handles returning to a specific point in the recursion (i.e. not primitive-recursive). It is said that every recursion can be turned into iteration, so it appears that this should be possible.
I just came up with a C# example of how to do this. Suppose you have the following recursive function, which acts like a postorder traversal, and that AbcTreeNode is a 3-ary tree with pointers a, b, c.
public static void AbcRecursiveTraversal(this AbcTreeNode x, List<int> list) {
if (x != null) {
AbcRecursiveTraversal(x.a, list);
AbcRecursiveTraversal(x.b, list);
AbcRecursiveTraversal(x.c, list);
list.Add(x.key);//finally visit root
}
}
The iterative solution:
int? address = null;
AbcTreeNode x = null;
x = root;
address = A;
stack.Push(x);
stack.Push(null)
while (stack.Count > 0) {
bool #return = x == null;
if (#return == false) {
switch (address) {
case A://
stack.Push(x);
stack.Push(B);
x = x.a;
address = A;
break;
case B:
stack.Push(x);
stack.Push(C);
x = x.b;
address = A;
break;
case C:
stack.Push(x);
stack.Push(null);
x = x.c;
address = A;
break;
case null:
list_iterative.Add(x.key);
#return = true;
break;
}
}
if (#return == true) {
address = (int?)stack.Pop();
x = (AbcTreeNode)stack.Pop();
}
}
Strive to make your recursive call Tail Recursion (recursion where the last statement is the recursive call). Once you have that, converting it to iteration is generally pretty easy.
Well, in general, recursion can be mimicked as iteration by simply using a storage variable. Note that recursion and iteration are generally equivalent; one can almost always be converted to the other. A tail-recursive function is very easily converted to an iterative one. Just make the accumulator variable a local one, and iterate instead of recurse. Here's an example in C++ (C were it not for the use of a default argument):
// tail-recursive
int factorial (int n, int acc = 1)
{
if (n == 1)
return acc;
else
return factorial(n - 1, acc * n);
}
// iterative
int factorial (int n)
{
int acc = 1;
for (; n > 1; --n)
acc *= n;
return acc;
}
Knowing me, I probably made a mistake in the code, but the idea is there.
Even using stack will not convert a recursive algorithm into iterative. Normal recursion is function based recursion and if we use stack then it becomes stack based recursion. But its still recursion.
For recursive algorithms, space complexity is O(N) and time complexity is O(N).
For iterative algorithms, space complexity is O(1) and time complexity is O(N).
But if we use stack things in terms of complexity remains same. I think only tail recursion can be converted into iteration.
The stacks and recursion elimination article captures the idea of externalizing the stack frame on heap, but does not provide a straightforward and repeatable way to convert. Below is one.
While converting to iterative code, one must be aware that the recursive call may happen from an arbitrarily deep code block. Its not just the parameters, but also the point to return to the logic that remains to be executed and the state of variables which participate in subsequent conditionals, which matter. Below is a very simple way to convert to iterative code with least changes.
Consider this recursive code:
struct tnode
{
tnode(int n) : data(n), left(0), right(0) {}
tnode *left, *right;
int data;
};
void insertnode_recur(tnode *node, int num)
{
if(node->data <= num)
{
if(node->right == NULL)
node->right = new tnode(num);
else
insertnode(node->right, num);
}
else
{
if(node->left == NULL)
node->left = new tnode(num);
else
insertnode(node->left, num);
}
}
Iterative code:
// Identify the stack variables that need to be preserved across stack
// invocations, that is, across iterations and wrap them in an object
struct stackitem
{
stackitem(tnode *t, int n) : node(t), num(n), ra(0) {}
tnode *node; int num;
int ra; //to point of return
};
void insertnode_iter(tnode *node, int num)
{
vector<stackitem> v;
//pushing a stackitem is equivalent to making a recursive call.
v.push_back(stackitem(node, num));
while(v.size())
{
// taking a modifiable reference to the stack item makes prepending
// 'si.' to auto variables in recursive logic suffice
// e.g., instead of num, replace with si.num.
stackitem &si = v.back();
switch(si.ra)
{
// this jump simulates resuming execution after return from recursive
// call
case 1: goto ra1;
case 2: goto ra2;
default: break;
}
if(si.node->data <= si.num)
{
if(si.node->right == NULL)
si.node->right = new tnode(si.num);
else
{
// replace a recursive call with below statements
// (a) save return point,
// (b) push stack item with new stackitem,
// (c) continue statement to make loop pick up and start
// processing new stack item,
// (d) a return point label
// (e) optional semi-colon, if resume point is an end
// of a block.
si.ra=1;
v.push_back(stackitem(si.node->right, si.num));
continue;
ra1: ;
}
}
else
{
if(si.node->left == NULL)
si.node->left = new tnode(si.num);
else
{
si.ra=2;
v.push_back(stackitem(si.node->left, si.num));
continue;
ra2: ;
}
}
v.pop_back();
}
}
Notice how the structure of the code still remains true to the recursive logic and modifications are minimal, resulting in less number of bugs. For comparison, I have marked the changes with ++ and --. Most of the new inserted blocks except v.push_back, are common to any converted iterative logic
void insertnode_iter(tnode *node, int num)
{
+++++++++++++++++++++++++
vector<stackitem> v;
v.push_back(stackitem(node, num));
while(v.size())
{
stackitem &si = v.back();
switch(si.ra)
{
case 1: goto ra1;
case 2: goto ra2;
default: break;
}
------------------------
if(si.node->data <= si.num)
{
if(si.node->right == NULL)
si.node->right = new tnode(si.num);
else
{
+++++++++++++++++++++++++
si.ra=1;
v.push_back(stackitem(si.node->right, si.num));
continue;
ra1: ;
-------------------------
}
}
else
{
if(si.node->left == NULL)
si.node->left = new tnode(si.num);
else
{
+++++++++++++++++++++++++
si.ra=2;
v.push_back(stackitem(si.node->left, si.num));
continue;
ra2: ;
-------------------------
}
}
+++++++++++++++++++++++++
v.pop_back();
}
-------------------------
}
Search google for "Continuation passing style." There is a general procedure for converting to a tail recursive style; there is also a general procedure for turning tail recursive functions into loops.
Just killing time... A recursive function
void foo(Node* node)
{
if(node == NULL)
return;
// Do something with node...
foo(node->left);
foo(node->right);
}
can be converted to
void foo(Node* node)
{
if(node == NULL)
return;
// Do something with node...
stack.push(node->right);
stack.push(node->left);
while(!stack.empty()) {
node1 = stack.pop();
if(node1 == NULL)
continue;
// Do something with node1...
stack.push(node1->right);
stack.push(node1->left);
}
}
Thinking of things that actually need a stack:
If we consider the pattern of recursion as:
if(task can be done directly) {
return result of doing task directly
} else {
split task into two or more parts
solve for each part (possibly by recursing)
return result constructed by combining these solutions
}
For example, the classic Tower of Hanoi
if(the number of discs to move is 1) {
just move it
} else {
move n-1 discs to the spare peg
move the remaining disc to the target peg
move n-1 discs from the spare peg to the target peg, using the current peg as a spare
}
This can be translated into a loop working on an explicit stack, by restating it as:
place seed task on stack
while stack is not empty
take a task off the stack
if(task can be done directly) {
Do it
} else {
Split task into two or more parts
Place task to consolidate results on stack
Place each task on stack
}
}
For Tower of Hanoi this becomes:
stack.push(new Task(size, from, to, spare));
while(! stack.isEmpty()) {
task = stack.pop();
if(task.size() = 1) {
just move it
} else {
stack.push(new Task(task.size() -1, task.spare(), task,to(), task,from()));
stack.push(new Task(1, task.from(), task.to(), task.spare()));
stack.push(new Task(task.size() -1, task.from(), task.spare(), task.to()));
}
}
There is considerable flexibility here as to how you define your stack. You can make your stack a list of Command objects that do sophisticated things. Or you can go the opposite direction and make it a list of simpler types (e.g. a "task" might be 4 elements on a stack of int, rather than one element on a stack of Task).
All this means is that the memory for the stack is in the heap rather than in the Java execution stack, but this can be useful in that you have more control over it.
Generally the technique to avoid stack overflow is for recursive functions is called trampoline technique which is widely adopted by Java devs.
However, for C# there is a little helper method here that turns your recursive function to iterative without requiring to change logic or make the code in-comprehensible. C# is such a nice language that amazing stuff is possible with it.
It works by wrapping parts of the method by a helper method. For example the following recursive function:
int Sum(int index, int[] array)
{
//This is the termination condition
if (int >= array.Length)
//This is the returning value when termination condition is true
return 0;
//This is the recursive call
var sumofrest = Sum(index+1, array);
//This is the work to do with the current item and the
//result of recursive call
return array[index]+sumofrest;
}
Turns into:
int Sum(int[] ar)
{
return RecursionHelper<int>.CreateSingular(i => i >= ar.Length, i => 0)
.RecursiveCall((i, rv) => i + 1)
.Do((i, rv) => ar[i] + rv)
.Execute(0);
}
One pattern to look for is a recursion call at the end of the function (so called tail-recursion). This can easily be replaced with a while. For example, the function foo:
void foo(Node* node)
{
if(node == NULL)
return;
// Do something with node...
foo(node->left);
foo(node->right);
}
ends with a call to foo. This can be replaced with:
void foo(Node* node)
{
while(node != NULL)
{
// Do something with node...
foo(node->left);
node = node->right;
}
}
which eliminates the second recursive call.
A question that had been closed as a duplicate of this one had a very specific data structure:
The node had the following structure:
typedef struct {
int32_t type;
int32_t valueint;
double valuedouble;
struct cNODE *next;
struct cNODE *prev;
struct cNODE *child;
} cNODE;
The recursive deletion function looked like:
void cNODE_Delete(cNODE *c) {
cNODE*next;
while (c) {
next=c->next;
if (c->child) {
cNODE_Delete(c->child)
}
free(c);
c=next;
}
}
In general, it is not always possible to avoid a stack for recursive functions that invoke itself more than one time (or even once). However, for this particular structure, it is possible. The idea is to flatten all the nodes into a single list. This is accomplished by putting the current node's child at the end of the top row's list.
void cNODE_Delete (cNODE *c) {
cNODE *tmp, *last = c;
while (c) {
while (last->next) {
last = last->next; /* find last */
}
if ((tmp = c->child)) {
c->child = NULL; /* append child to last */
last->next = tmp;
tmp->prev = last;
}
tmp = c->next; /* remove current */
free(c);
c = tmp;
}
}
This technique can be applied to any data linked structure that can be reduce to a DAG with a deterministic topological ordering. The current nodes children are rearranged so that the last child adopts all of the other children. Then the current node can be deleted and traversal can then iterate to the remaining child.
Recursion is nothing but the process of calling of one function from the other only this process is done by calling of a function by itself. As we know when one function calls the other function the first function saves its state(its variables) and then passes the control to the called function. The called function can be called by using the same name of variables ex fun1(a) can call fun2(a).
When we do recursive call nothing new happens. One function calls itself by passing the same type and similar in name variables(but obviously the values stored in variables are different,only the name remains same.)to itself. But before every call the function saves its state and this process of saving continues. The SAVING IS DONE ON A STACK.
NOW THE STACK COMES INTO PLAY.
So if you write an iterative program and save the state on a stack each time and then pop out the values from stack when needed, you have successfully converted a recursive program into an iterative one!
The proof is simple and analytical.
In recursion the computer maintains a stack and in iterative version you will have to manually maintain the stack.
Think over it, just convert a depth first search(on graphs) recursive program into a dfs iterative program.
All the best!
TLDR
You can compare the source code below, before and after to intuitively understand the approach without reading this whole answer.
I ran into issues with some multi-key quicksort code I was using to process very large blocks of text to produce suffix arrays. The code would abort due to the extreme depth of recursion required. With this approach, the termination issues were resolved. After conversion the maximum number of frames required for some jobs could be captured, which was between 10K and 100K, taking from 1M to 6M memory. Not an optimum solution, there are more effective ways to produce suffix arrays. But anyway, here's the approach used.
The approach
A general way to convert a recursive function to an iterative solution that will apply to any case is to mimic the process natively compiled code uses during a function call and the return from the call.
Taking an example that requires a somewhat involved approach, we have the multi-key quicksort algorithm. This function has three successive recursive calls, and after each call, execution begins at the next line.
The state of the function is captured in the stack frame, which is pushed onto the execution stack. When sort() is called from within itself and returns, the stack frame present at the time of the call is restored. In that way all the variables have the same values as they did before the call - unless they were modified by the call.
Recursive function
def sort(a: list_view, d: int):
if len(a) <= 1:
return
p = pivot(a, d)
i, j = partition(a, d, p)
sort(a[0:i], d)
sort(a[i:j], d + 1)
sort(a[j:len(a)], d)
Taking this model, and mimicking it, a list is set up to act as the stack. In this example tuples are used to mimic frames. If this were encoded in C, structs could be used. The data can be contained within a data structure instead of just pushing one value at a time.
Reimplemented as "iterative"
# Assume `a` is view-like object where slices reference
# the same internal list of strings.
def sort(a: list_view):
stack = []
stack.append((LEFT, a, 0)) # Initial frame.
while len(stack) > 0:
frame = stack.pop()
if len(frame[1]) <= 1: # Guard.
continue
stage = frame[0] # Where to jump to.
if stage == LEFT:
_, a, d = frame # a - array/list, d - depth.
p = pivot(a, d)
i, j = partition(a, d, p)
stack.append((MID, a, i, j, d)) # Where to go after "return".
stack.append((LEFT, a[0:i], d)) # Simulate function call.
elif stage == MID: # Picking up here after "call"
_, a, i, j, d = frame # State before "call" restored.
stack.append((RIGHT, a, i, j, d)) # Set up for next "return".
stack.append((LEFT, a[i:j], d + 1)) # Split list and "recurse".
elif stage == RIGHT:
_, a, _, j, d = frame
stack.append((LEFT, a[j:len(a)], d)
else:
pass
When a function call is made, information on where to begin execution after the function returns is included in the stack frame. In this example, if/elif/else blocks represent the points where execution begins after return from a call. In C this could be implemented as a switch statement.
In the example, the blocks are given labels; they're arbitrarily labeled by how the list is partitioned within each block. The first block, "LEFT" splits the list on the left side. The "MID" section represents the block that splits the list in the middle, etc.
With this approach, mimicking a call takes two steps. First a frame is pushed onto the stack that will cause execution to resume in the block following the current one after the "call" "returns". A value in the frame indicates which if/elif/else section to fall into on the loop that follows the "call".
Then the "call" frame is pushed onto the stack. This sends execution to the first, "LEFT", block in most cases for this specific example. This is where the actual sorting is done regardless which section of the list was split to get there.
Before the looping begins, the primary frame pushed at the top of the function represents the initial call. Then on each iteration, a frame is popped. The "LEFT/MID/RIGHT" value/label from the frame is used to fall into the correct block of the if/elif/else statement. The frame is used to restore the state of the variables needed for the current operation, then on the next iteration the return frame is popped, sending execution to the subsequent section.
Return values
If the recursive function returns a value used by itself, it can be treated the same way as other variables. Just create a field in the stack frame for it. If a "callee" is returning a value, it checks the stack to see if it has any entries; and if so, updates the return value in the frame on the top of the stack. For an example of this you can check this other example of this same approach to recursive to iterative conversion.
Conclusion
Methods like this that convert recursive functions to iterative functions, are essentially also "recursive". Instead of the process stack being utilized for actual function calls, another programmatically implemented stack takes its place.
What is gained? Perhaps some marginal improvements in speed. Or it could serve as a way to get around stack limitations imposed by some compilers and/or execution environments (stack pointer hitting the guard page). In some cases, the amount of data pushed onto the stack can be reduced. Do the gains offset the complexity introduced in the code by mimicking something that we get automatically with the recursive implementation?
In the case of the sorting algorithm, finding a way to implement this particular one without a stack could be challenging, plus there are so many iterative sorting algorithms available that are much faster. It's been said that any recursive algorithm can be implemented iteratively. Sure... but some algorithms don't convert well without being modified to such a degree that they're no longer the same algorithm.
It may not be such a great idea to convert recursive algorithms just for the sake of converting them. Anyway, for what it's worth, the above approach is a generic way of converting that should apply to just about anything.
If you find you really need an iterative version of a recursive function that doesn't use a memory eating stack of its own, the best approach may be to scrap the code and write your own using the description from a scholarly article, or work it out on paper and then code it from scratch, or other ground up approach.
There is a general way of converting recursive traversal to iterator by using a lazy iterator which concatenates multiple iterator suppliers (lambda expression which returns an iterator). See my Converting Recursive Traversal to Iterator.
Another simple and complete example of turning the recursive function into iterative one using the stack.
#include <iostream>
#include <stack>
using namespace std;
int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }
struct Par
{
int a, b;
Par() : Par(0, 0) {}
Par(int _a, int _b) : a(_a), b(_b) {}
};
int GCDIter(int a, int b)
{
stack<Par> rcstack;
if (b == 0)
return a;
rcstack.push(Par(b, a % b));
Par p;
while (!rcstack.empty())
{
p = rcstack.top();
rcstack.pop();
if (p.b == 0)
continue;
rcstack.push(Par(p.b, p.a % p.b));
}
return p.a;
}
int main()
{
//cout << GCD(24, 36) << endl;
cout << GCDIter(81, 36) << endl;
cin.get();
return 0;
}
My examples are in Clojure, but should be fairly easy to translate to any language.
Given this function that StackOverflows for large values of n:
(defn factorial [n]
(if (< n 2)
1
(*' n (factorial (dec n)))))
we can define a version that uses its own stack in the following manner:
(defn factorial [n]
(loop [n n
stack []]
(if (< n 2)
(return 1 stack)
;; else loop with new values
(recur (dec n)
;; push function onto stack
(cons (fn [n-1!]
(*' n n-1!))
stack)))))
where return is defined as:
(defn return
[v stack]
(reduce (fn [acc f]
(f acc))
v
stack))
This works for more complex functions too, for example the ackermann function:
(defn ackermann [m n]
(cond
(zero? m)
(inc n)
(zero? n)
(recur (dec m) 1)
:else
(recur (dec m)
(ackermann m (dec n)))))
can be transformed into:
(defn ackermann [m n]
(loop [m m
n n
stack []]
(cond
(zero? m)
(return (inc n) stack)
(zero? n)
(recur (dec m) 1 stack)
:else
(recur m
(dec n)
(cons #(ackermann (dec m) %)
stack)))))
A rough description of how a system takes any recursive function and executes it using a stack:
This intended to show the idea without details. Consider this function that would print out nodes of a graph:
function show(node)
0. if isleaf(node):
1. print node.name
2. else:
3. show(node.left)
4. show(node)
5. show(node.right)
For example graph:
A->B
A->C
show(A) would print B, A, C
Function calls mean save the local state and the continuation point so you can come back, and then jump the the function you want to call.
For example, suppose show(A) begins to run. The function call on line 3. show(B) means
- Add item to the stack meaning "you'll need to continue at line 2 with local variable state node=A"
- Goto line 0 with node=B.
To execute code, the system runs through the instructions. When a function call is encountered, the system pushes information it needs to come back to where it was, runs the function code, and when the function completes, pops the information about where it needs to go to continue.
This link provides some explanation and proposes the idea of keeping "location" to be able to get to the exact place between several recursive calls:
However, all these examples describe scenarios in which a recursive call is made a fixed amount of times. Things get trickier when you have something like:
function rec(...) {
for/while loop {
var x = rec(...)
// make a side effect involving return value x
}
}
This is an old question but I want to add a different aspect as a solution. I'm currently working on a project in which I used the flood fill algorithm using C#. Normally, I implemented this algorithm with recursion at first, but obviously, it caused a stack overflow. After that, I changed the method from recursion to iteration. Yes, It worked and I was no longer getting the stack overflow error. But this time, since I applied the flood fill method to very large structures, the program was going into an infinite loop. For this reason, it occurred to me that the function may have re-entered the places it had already visited. As a definitive solution to this, I decided to use a dictionary for visited points. If that node(x,y) has already been added to the stack structure for the first time, that node(x,y) will be saved in the dictionary as the key. Even if the same node is tried to be added again later, it won't be added to the stack structure because the node is already in the dictionary. Let's see on pseudo-code:
startNode = pos(x,y)
Stack stack = new Stack();
Dictionary visited<pos, bool> = new Dictionary();
stack.Push(startNode);
while(stack.count != 0){
currentNode = stack.Pop();
if "check currentNode if not available"
continue;
if "check if already handled"
continue;
else if "run if it must be wanted thing should be handled"
// make something with pos currentNode.X and currentNode.X
// then add its neighbor nodes to the stack to iterate
// but at first check if it has already been visited.
if(!visited.Contains(pos(x-1,y)))
visited[pos(x-1,y)] = true;
stack.Push(pos(x-1,y));
if(!visited.Contains(pos(x+1,y)))
...
if(!visited.Contains(pos(x,y+1)))
...
if(!visited.Contains(pos(x,y-1)))
...
}

Lock-free programming: reordering and memory order semantics

I am trying to find my feet in lock-free programming. Having read different explanations for memory ordering semantics, I would like to clear up what possible reordering may happen. As far as I understood, instructions may be reordered by the compiler (due to optimization when the program is compiled) and CPU (at runtime?).
For the relaxed semantics cpp reference provides the following example:
// Thread 1:
r1 = y.load(memory_order_relaxed); // A
x.store(r1, memory_order_relaxed); // B
// Thread 2:
r2 = x.load(memory_order_relaxed); // C
y.store(42, memory_order_relaxed); // D
It is said that with x and y initially zero the code is allowed to produce r1 == r2 == 42 because, although A is sequenced-before B within thread 1 and C is sequenced before D within thread 2, nothing prevents D from appearing before A in the modification order of y, and B from appearing before C in the modification order of x. How could that happen? Does it imply that C and D get reordered, so the execution order would be DABC? Is it allowed to reorder A and B?
For the acquire-release semantics there is the following sample code:
std::atomic<std::string*> ptr;
int data;
void producer()
{
std::string* p = new std::string("Hello");
data = 42;
ptr.store(p, std::memory_order_release);
}
void consumer()
{
std::string* p2;
while (!(p2 = ptr.load(std::memory_order_acquire)))
;
assert(*p2 == "Hello"); // never fires
assert(data == 42); // never fires
}
I'm wondering what if we used relaxed memory order instead of acquire? I guess, the value of data could be read before p2 = ptr.load(std::memory_order_relaxed), but what about p2?
Finally, why it is fine to use relaxed memory order in this case?
template<typename T>
class stack
{
std::atomic<node<T>*> head;
public:
void push(const T& data)
{
node<T>* new_node = new node<T>(data);
// put the current value of head into new_node->next
new_node->next = head.load(std::memory_order_relaxed);
// now make new_node the new head, but if the head
// is no longer what's stored in new_node->next
// (some other thread must have inserted a node just now)
// then put that new head into new_node->next and try again
while(!head.compare_exchange_weak(new_node->next, new_node,
std::memory_order_release,
std::memory_order_relaxed))
; // the body of the loop is empty
}
};
I mean both head.load(std::memory_order_relaxed) and head.compare_exchange_weak(new_node->next, new_node, std::memory_order_release, std::memory_order_relaxed).
To summarize all the above, my question is essentially when do I have to care about potential reordering and when I don't?
For #1, compiler may issue the store to y before the load from x (there are no dependencies), and even if it doesn't, the load from x can be delayed at cpu/memory level.
For #2, p2 would be nonzero, but neither *p2 nor data would necessarily have a meaningful value.
For #3 there is only one act of publishing non-atomic stores made by this thread, and it is a release
You should always care about reordering, or, better, not assume any order: neither C++ nor hardware executes code top to bottom, they only respect dependencies.

Another weird issue with Garbage Collection?

OK, so here's the culprit method :
class FunctionDecl
{
// More code...
override void execute()
{
//...
writeln("Before setting... " ~ name);
Glob.functions.set(name,this);
writeln("After setting." ~ name);
//...
}
}
And here's what happens :
If omit the writeln("After setting." ~ name); line, the program crashes, just at this point
If I keep it in (using the name attribute is the key, not the writeln itself), it works just fine.
So, I suppose this is automatically garbage collected? Why is that? (A pointer to some readable reference related to GC and D would be awesome)
How can I solve that?
UPDATE :
Just tried a GC.disable() at the very beginning of my code. And... automagically, everything works again! So, that was the culprit as I had suspected. The thing is : how is this solvable without totally eliminating Garbage Collection?
UPDATE II :
Here's the full code of functionDecl.d - "unnecessary" code omitted :
//================================================
// Imports
//================================================
// ...
//================================================
// C Interface for Bison
//================================================
extern (C)
{
void* FunctionDecl_new(char* n, Expressions i, Statements s) { return cast(void*)(new FunctionDecl(to!string(n),i,s)); }
void* FunctionDecl_newFromReference(char* n, Expressions i, Expression r) { return cast(void*)(new FunctionDecl(to!string(n),i,r)); }
}
//================================================
// Functions
//================================================
class FunctionDecl : Statement
{
// .. class variables ..
this(string n, Expressions i, Statements s)
{
this(n, new Identifiers(i), s);
}
this(string n, Expressions i, Expression r)
{
this(n, new Identifiers(i), r);
}
this(string n, Identifiers i, Statements s)
{
// .. implementation ..
}
this(string n, Identifiers i, Expression r)
{
// .. implementation ..
}
// .. other unrelated methods ..
override void execute()
{
if (Glob.currentModule !is null) parentModule = Glob.currentModule.name;
Glob.functions.set(name,this);
}
}
Now as for what Glob.functions.set(name,this); does :
Glob is an instance holding global definitions
function is the class instance dealing with defined functions (it comes with a FunctionDecl[] list
set simply does that : list ~= func;
P.S. I'm 99% sure it has something to do with this one : Super-weird issue triggering "Segmentation Fault", though I'm still not sure what went wrong this time...
I think the problem is that the C function is allocating the object, but D doesn't keep a reference. If FunctionDecl_new is called back-to-back in a tight memory environment, here's what would happen:
the first one calls, creating a new object. That pointer goes into the land of C, where the D GC can't see it.
The second one goes, allocating another new object. Since memory is tight (as far as the GC pool is concerned), it tries to run a collection cycle. It finds the object from (1), but cannot find any live pointers to it, so it frees it.
The C function uses that freed object, causing the segfault.
The segfault won't always run because if there's memory to spare, the GC won't free the object when you allocate the second one, it will just use its free memory instead of collecting. That's why omitting the writeln can get rid of the crash: the ~ operator allocates, which might just put you over the edge of that memory line, triggering a collection (and, of course, running the ~ gives the gc a chance to run in the first place. If you never GC allocate, you never GC collect either - the function looks kinda like gc_allocate() { if(memory_low) gc_collect(); return GC_malloc(...); })
There's three solutions:
Immediately store a reference in the FunctionDecl_new function in a D structure, before returning:
FunctionDecl[] fdReferences;
void* FunctionDecl_new(...) {
auto n = new FunctionDecl(...);
fdReferences ~= n; // keep the reference for later so the GC can see it
return cast(void*) n;
}
Call GC.addRoot on the pointer right before you return it to C. (I don't like this solution, I think the array is better, a lot simpler.)
Use malloc to create the object to give to C:
void* FunctionDecl_new(...) {
import std.conv : emplace;
import core.stdc.stdlib : malloc;
enum size = __traits(classInstanceSize, FunctionDecl);
auto memory = malloc(size)[0 .. size]; // need to slice so we know the size
auto ref = emplace!FunctionDecl(memory, /* args to ctor */); // create the object in the malloc'd block
return memory.ptr; // give the pointer to C
}
Then, of course, you ought to free the pointer when you know it is no longer going to be used, though if you don't, it isn't really wrong.
The general rule I follow btw is any memory that crosses language barriers for storage (usage is different) ought to be allocated similarly to what that language expects: So if you pass data to C or C++, allocate it in a C fashion, e.g. with malloc. This will lead to the least surprising friction as it gets stored.
If the object is just being temporarily used, it is fine to pass a plain pointer to it, since a temp usage isn't stored or freed by the receiving function so there's less danger there. Your reference will still exist too, if nothing else, on the call stack.

Access to modified closure - ref int

int count = itemsToValidate.Count;
foreach(var item in itemsToValidate)
{
item.ValidateAsync += (x, y) => this.HandleValidate(ref count);
}
private void HandleValidate(ref int x)
{
--x;
if (x == 0)
{
// All items are validated.
}
}
For the above code resharper complained "Access to Modified Closure". Doesn't do that if I change that to type of object. Why is this a closure, even though I am passing by ref ?
This happens all the time
ReSharper is warning you that count is implicitly captured by the lambdas that you are assigning as "validation complete" event handlers, and that its value may well change between the time the lambda is created (i.e. when you assign the event handler) and the time when it is invoked. If this happens, the lambda will not see the value one would intuitively expect.
An example:
int count = itemsToValidate.Count;
foreach(var item in itemsToValidate)
{
item.ValidateAsync += (x, y) => this.HandleValidate(ref count);
}
// afterwards, at some point before the handlers get invoked:
count = 0;
In this instance the handlers will read the value of count as 0 instead of itemsToValidate.Count -- which might be called "obvious", but is surprising and counter-intuitive to many developers not familiar with the mechanics of lambdas.
And we usually solve it like this
The usual solution to "shut R# up" is to move the captured variable in an inner scope, where it is much less accessible and R# can be prove that it cannot be modified until the lambda is evaluated:
int count = itemsToValidate.Count;
foreach(var item in itemsToValidate)
{
int inner = count; // this makes inner impossible to modify
item.ValidateAsync += (x, y) => this.HandleValidate(ref inner);
}
// now this will of course not affect what the lambdas do
count = 0;
But your case is special
Your particular case is a comparatively rare one where you specifically want this behavior, and using the above trick would actually make the program behave incorrectly (you need the captured references to point to the same count).
The correct solution: disable this warning using the special line comments that R# recognizes.

Resources