Bresenham's algorithm drawing straight lines in all the octants - graphics

I am currently taking an introductory course to graphics and I am learning about drawing straight lines using Bresenham's algorithm. Now I must confess that my studying habit involves google searching extra notes because sometimes in class notes just aren't enough.
I know that with a general Bresenham's algorithm you can in general draw the first octant and that in order to draw in the other octants you have to do some fancy tricks.
Now, my real question involves how to understand that concept behind drawing a line in the seventh octant. According to these notes
https://courses.engr.illinois.edu/ece390/lecture/potts/lecture17_6pps.pdf
that I found online (please refer to page 14 and 15 for more clarity in that pdf) if you want to draw in the seventh octant you have to swap the x1, y1 and x2,y2; then increment X by -1 and finally set the pixel as set_pixel(y,x). However, this is where my confusion is, on page 14 which shows an example of drawing in the seventh octant why is dx equal positive 6 and not negative 6? Isn't dx x2 - x1?

The distances are absolute values of the difference of coordinates. I think in a later version of the same slides (on slide 9), they changed it to dx=|X2-X1|, which is the correct notation.

Related

How to optimize two ranges for the determination of the intersection point between two curves

I start this thread asking for your help in Excel.
The main goal is to determine the coordinates of the intersection point P=(x,y) between two curves (curve A, curve B) modeled by points.
The curves are non-linear and each defining point is determined using complex equations (equations are dependent by a lot of parameters chosen by user, as well as user will choose the number of points which will define the accuracy of the curves). That is to say that each curve (curve A and curve B) is always changing in the plane XY (Z coordinate is always zero, we are working on the XY plane) according to the input parameters and the number of the defining points is also depending by the user choice.
My first attempt was to determine the intersection point through the trend equations of each curve (I used the LINEST function to determine the coefficients of the polynomial equation) and by solving the solution putting them into a system. The problem is that Excel is not interpolating very well the curves because they are too wide, then the intersection point (the solution of the system) is very far from the real solution.
Then, what I want to do is to shorten the ranges of points to be able to find two defining trend equations for the curves, cutting away the portion of curves where cannot exist the intersection.
Today, in order to find the solution, I plot the curves on Siemens NX cad using multi-segment splines with order 3 and then I can easily find the coordinates of the intersection point. Please notice that I am using the multi-segment splines to be more precise with the approximation of the functions curve A and curve B.
Since I want to avoid the CAD tool and stay always on Excel, is there a way to select a shorter range of the defining points close to the intersection point in order to better approximate curve A and curve B with trend equations (Linest function with 4 points and 3rd order spline) and then find the solution?
I attach a picture to give you an example of Curve A and Curve B on the plane:
https://postimg.cc/MfnKYqtk
At the following link you can find the Excel file with the coordinate points and the curve plot:
https://www.mediafire.com/file/jqph8jrnin0i7g1/intersection.xlsx/file
I hope to solve this problem with your help, thank you in advance!
kalo86
Your question gave me some days of thinking and research.
With the help of https://pomax.github.io/bezierinfo/
§ 27 - Intersections (Line-line intersections)
and
§ 28 - Curve/curve intersection
your problem can be solved in Excel.
About the mystery of Excel smoothed lines you find details here:
https://blog.splitwise.com/2012/01/31/mystery-solved-the-secret-of-excel-curved-line-interpolation/
The author of this fit is Dr. Brian T. Murphy, PhD, PE from www.xlrotor.com. You find details here:
https://www.xlrotor.com/index.php/our-company/about-dr-murphy
https://www.xlrotor.com/index.php/knowledge-center/files
=>see Smooth_curve_bezier_example_file.xls
https://www.xlrotor.com/smooth_curve_bezier_example_file.zip
These knitted together you get the following results for the intersection of your given curves:
for the straight line intersection:
(x = -1,02914127711195 / y = 23,2340949174492)
for the smooth line intersection:
(x = -1,02947493047196 / y = 23,2370611219553)
For a full automation of your task you would need to add more details regarding the needed accuracy and what details you need for further processing (and this is actually not the scope of this website ;-).
Intersection of the straight lines:
Intersection of the smoothed lines:
comparison charts:
solution,
Thank you very much for the anwer, you perfectly centered my goal.
Your solution (for the smoothed lines) is very very close to what I determine in Siemens NX.
I'm going to read the documentation at the provided link https://pomax.github.io/bezierinfo/ in order to better understand the math behind this argument.
Then, to resume my request, you have been able to find the coordinates (x,y) of the intersection point between two curves without passing through an advanced CAD system with a very good precision.
I am starting to study now, best regards!
kalo86

Breaking a path into 100 pixel lines

I have a path drawn in Illustrator, and I need to break the path into section of 100 px. I can't figure out the logic. A line consist of 2 points x1,y1 and x2, y2. And this is for a straight line. My line may have angles/curve, so what do I need to do, to figure out the distance between 2 pixels.Here is a graphic illustration of my line and the sections, which I need to select/extract:
From the shape above, I need to break it into section of lines(note these are not straight lines).
Try referencing the Bug Algorithm. It's a very simple intuitive approach to path planning. I've uploaded an example written in LabVIEW here, but I know there are plenty of others available.
The Bug Algorithm generates a continuous line; a lot of data points; however you can keep a running average of the general diretion it's heading in and detect sharp changes in angles as an important node in the path. This allows you to segment paths from possibly thousands of data points into just a handful.
There are two aspects in your question:
how do I break a path at some point,
how do I find points spaced by a certain distance.
To answer the first, the type of primitives that define the path matters. Assuming a sequence of Bezier cubics, you will resort to the de Casteljau's algorithm: it allows you to construct the control points that correspond to a desired section of a given Bezier arc, from the original control points. Then, a section of a path will be obtained as a starting section of an initial Bezier, then (possibly) a sequence of whole Bezier arcs, and finally the ending section of a last Bezier arc.
To answer the second, assuming that you need an accurate answer, you will need to resort to numerical integration of the arc length along the path. Refer to this post: https://math.stackexchange.com/a/1171564/65203.
For a simple approximation, you can flatten the curve (approximate it as a polyline) and compute the accumulated segment lengths (or even count the pixels if your curve renderer gives you access to this information).
This process is not trivial.

Finding pixels inside an ellipse

My maths skills are terrible so I don't even know where to start with this. This is for a hobby project written in C#.
To keep things simple, let's say I need to operate on all of the pixels positioned inside an ellipse. How would I get an array of the valid pixel locations inside the ellipse that I need to work with?
For that task i would recommend taking a look at bresenhams filled circle Algorithm.
If you scale the y achsis you can use it to draw ellipses, too.
Bresenham algorithms work by using only integer arithmetic, which makes them fast(est)
This works only for axe-parallel ellipses
In an ellipse the sum of the distance between a point in the ellipse and both foci is twice the major axis so:
PF1 + PF2 = 2a
Where P is the point, F1 and F2 the foci and a the semi major axis.
If the sum is less then 2a the point will be inside the ellispe.
Wikipedia

Looking for a fast polygon rendering algorithm

I am working with a Microchip dsPIC33FJ128GP802. It's a small DSP-based microcontroller, and it doesn't have much power (40 million instructions per second). I'm looking for a way to render a convex (i.e. simple) polygon. I am only dealing with 2D shapes, integer math, and set or clear pixels (i.e. 1 bit per pixel.) I already have routines for drawing fast horizontal and vertical lines (writing up to 16 pixels in 88 cycles), so I would like to use a scanline algorithm.
However, all the algorithms I have found seem to depend on division (which takes 18 cycles on this processor) and floating point math (which is emulated in software and so is very slow; it also takes up a lot of ROM), or assume that I have a large amount of memory. I only have 2K left, ~14K is used for graphics RAM of my 16K. So does anyone know of any good, embedded machine algorithms they can point me to with a simple C or pseudocode implementation which I can implement in assembly? Preferably on the 'net, I don't live near any good bookstores with many programming books.
Thanks. :)
EDIT: Clarification, this is a polygon filling algorithm I'm looking for. I can implement a polygon outline algorithm using Bresenham's line drawing algorithm (as Marc B suggests.)
EDIT #2: I wanted to let everyone know I got a basic algorithm up in Python. Here's a link to the code. Public domain code.
http://dl.dropbox.com/u/1134084/bresenham_demos.py
How about Bresenham's Line algorithm? After some setup, it's pure integer math, and can be adapted to draw a polygon by simple iteration of starting points along the polygon edges.
comments followup:
I'll try to draw this in ASCII, but it'll probably look like crud. Bresenham's can be used to draw a filled polygon by picking a starting edge, and iteratively moving a bresenham line across the canvas parallel to that point.
Let's say you've got some points like this:
*(1)
*(3)
*(2)
*(4)
These are numbered in left-right sort priority, so you pick the left-most starting point (1) and decide if you want to go vertically (start 1,2) or horizontally (1,3). That'd probably depend on how your DSP does its display, but let's go with vertical.
So... You use the 1-2 line as your starting bresenham line. You calculate the starting points of your fill lines by using lines 1-3 and 2-4 as your start/end points. Start a bresenham calculation for each, and draw another Bresenham between those two points. Kinda like:
1.1 -> 2.1, then 1.2 -> 2.2, then 1.3 -> 2.3
etc... until you reach the end of either of those lines. In this case, that'd be when the lower starting point reaches (4). At that point, you start iterating up the 4,3 line, until you reach point 3 with both starting points, and you're done.
*-------
\\\\\\\\ *
\\\\\\\\
*-----\\
------- *
Where the dashes are the starting points you calculated along 1-3 and 2-4, and the slashes are the fill lines.
Of course, this only works if the points are properly sorted, and you've got a convex polygon. If it's concave, you'll have to be very careful to not let your fill lines cross over the border, or do some pre-processing and subdivide the original poly into two or more convex ones.
You may want to look at Michael Abrash's articles on Dr Dobbs about polygon fill/raster/etc. It uses fixed-point math
Thomas, if you have a Bresenham line drawing algorithm available, then use it as a basis for further enhancement: divide your polygon to sub-polygons with an horizontal cutting line through every vertex. Then, start tracing the 2 left and right sides of each of these sub-polys, using Bresenham. This way you have the 2 end-points of each scan line in your polygon.
I would start by converting the polygon to a collection of triangles and render those, because triangles are easy to render by scanlines. Although even so there are some details.
Essentially, the draw-triangle sub-procedure will be given a raw triangle and proceed:
Reject degenerate triangles (where two of the three vertices overlap).
Sort the vertices in Y (since there are only three you can hardcode the sorting logic).
Now, at this point you should know that there will be three kinds of triangles: ones with a flat top, ones with a flat bottom, and "general" triangles. You want to handle a general triangle by essentially splitting it into one each of the flat types. This is because you don't want to have an if test every scanline to detect if the slope changed.
To render a flat triangle, you would run two Bresenham algorithms in parallel to iterate the pixels comprising the edges, and use the points they give you as the endpoints of each horizontal scanline.
It may be easier to break the problem into two parts. First, locate/write an algorithm that draws and fills a triangle. Second, write an algorithm that breaks up an arbitrary polygon into triangles (using different combinations of the vertices).
To draw/fill a triangle, use Bresenham's Line Algorithm to simultaneously draw a line between points 0 and 1, and between 1 and 2. For each input point x, draw the pixel if it is equal to or in between the y points generated by the two lines. When you reach one endpoint, continue by using the unfinished side and the side that has not yet been used.
Edit:
To break your convex polygon into triangles, arrange the points in order and call them P1, P2, ... PN. Let P1 be your "root" point, and build triangles using that point and combinations of adjacent points. For example, a pentagon would yield the three triangles P1-P2-P3, P1-P3-P4, and P1-P4-P5. In general, a convex polygon with N sides will decompose into N-2 triangles.

How do you draw like a Crayon?

Crayon Physics Deluxe is a commercial game that came out recently. Watch the video on the main link to get an idea of what I'm talking about.
It allows you to draw shapes and have them react with proper physics. The goal is to move a ball to a star across the screen using contraptions and shapes you build.
While the game is basically a wrapper for the popular Box2D Physics Engine, it does have one feature that I'm curious about how it is implemented.
Its drawing looks very much like a Crayon. You can see the texture of the crayon and as it draws it varies in thickness and darkness just like an actual crayon drawing would look like.
(source: kloonigames.com)
(source: kloonigames.com)
The background texture is freely available here.
What kind of algorithm would be used to render those lines in a way that looks like a Crayon? Is it a simple texture applied with a random thickness and darkness or is there something more going on?
I remember reading (a long time ago) a short description of an algorithm to do so:
for the general form of the line, you split the segment in two at a random point, and move this point slightly away from it's position (the variation depending on the distance of the point to the extremity). Repeat recursively/randomly. In this way, you lines are not "perfect" (straight line)
for a given segment you can "overshoot" a little bit, by extending one extremity or the other (or both). In this way, you don't have perfect joints. If i remember well, the best was to extends the original extremities, but you can do this for the sub-segment if you want to visibly split them.
draw the lines with pattern/stamp
there was also the (already mentioned) possibility to drawn with different starting and ending opacity (to mimic the tendency to release the pen at the end of drawing)
You can use a different size for the stamp on the beginning and the end of the line (also to mimic the tendency to release the pen at the end of drawing). For the same effect, you can also draw the line twice, with a small variation for one of the extremity (be careful with the alpha in this case, as the line will be drawn twice)
Last, for a given line, you can do the previous modifications several times (ie draw the line twice, with different variations) : human tend to repeat a line if they make some mistakes.
Regards
If you blow the image up you can see a repeating stamp-pattern .. there's probably a small assortment that it uses as it moves from a to b - might even rotate them ..
The wavering of the line can't be all that difficult to do. Divide into a bunch of random segments, pick positions slightly away from the direct route and draw splines.
Here's a paper that uses a lot of math to simulate the deposition of wax on paper using a model of friction. But I think your best bet is to just use a repeating pattern, as another reader mentioned, and vary the opacity according to pressure.
For the imperfect line drawing parts, I have a blog entry describing how to do it using bezier curves.
You can base darkness on speed. That's just measuring the distance traveled by the cursor between this frame and the last frame (remember Pythagorean theorem) and then when you go to draw that line segment on screen, adjust the alpha (opacity) according to the distance you measured.
There is a paper available called Mimicking Hand Drawn Pencil Lines which covers a bit of what you are after. Although it doesn't present a very detailed view of the algorithm, the authors do cover the basics of the steps that they used.
This paper includes high level descriptions of how they generated the lines, as well as how they generated the textures for the lines, and they get results which are similar to what you want.
This article on rendering chart series to look like XKCD comics has an algorithm for perturbing lines which may be relevant. It doesn't cover calculating the texture of a crayon drawn line, but it does offer an approach to making a straight line look imperfect in a human-like way.
Example output:
I believe the easiest way would simply be to use a texture with random darkness (some gradients, maybe) throughout, and set size randomly.

Resources