Updating Status Dialog from Thread in MFC - multithreading

I have a function performing a large amount of work and I want to be able to provide a status dialog in MFC (although I think this question is pertinent to any GUI).
Normally I would just create a thread and then post messages to the main window for updates. However, in this case the function also needs to work from non-MFC applications, such at MATLAB and Python. Therefore, I seem to have two choices, neither one I like.
The first option is to include the MFC code in the thread surrounded by #ifdefs. If figure I will need about five of these, although I could probably combine some of them.
The second option is to define a variable in the main window that the thread updates. The main window would have to create a timer to check that variable and update the GUI. This would entirely remove the MFC code from the thread, but is still a kludge.
My question is, which do you think is the lesser of the two evils, surrounding the thread code by #ifdefs, or implementing a timer? Better still, is there a third option that I haven't thought of?
Thank you.

Related

MS Access writing to Excel over multiple minutes will sometimes throw a false error

I'm someone who solves problems by looking, not asking. So this is new to me. This has been an issue for years, and it crops up with different computers, networks, versions and completely different code. There is a lot here, so, thank you in advance if you are willing to read the whole thing.
Generally speaking, I write MS Access programs that will open Excel and then create multiple worksheets inside of a workbook using data from Access tables and/or Excel sheets. The process can take a couple of minutes to run and occasionally, it will get an error. I could tell you the error message, but it doesn't matter because it will be different depending where the error occurs. When it occurs I simply click debug and click continue and it... continues. If it errors out again (many loops later), it will happen in the exact same spot.
So, what I start with is to make minor changes to the code. In the current program I'm working on, the error happens when I write to a cell and the value is a value directly from a table. I created a variable, copied the value to the variable and then wrote to the cell. The error moved to a completely different part of the program and it became a "paste" error. Generally what fixes it is to put a wait function at the spot where the error occurs. One second is usually good enough. Sometimes it takes a couple of these, but that usually solves it. It only took one delay per loop this time, so it is working. I just hate causing delays in my program. So... Has anyone seen anything like this before, or is it just me. It feels like a timing issue between Access and Excel since the delays are usually helpful. Thanks in advance.
I dug up my last major Access project that interacted with Word (ca. 2016) where I struggled with similar issues. I see many, many Debug.Print statements (some commented, some still active), but unlike what I recalled earlier in my comments, I don't see any "wait" statements anymore! From what I now recall and after re-inspecting the code, most problems were resolved by
implementing robust error handling and best practices for always closing automation objects (and/or releasing the objects if I wanted the instances to persist)
subscribing to and utilizing appropriate automation object events to detect and handle interaction rather than trying to force everything into serialized work-then-wait code. To do this, I placed all automation code in well-structured classes that declared automation objects WithEvents (in VBA of course) and then defined relevant event handlers for actions I was effecting. I now recall finally being able to avoid weird errors and application hangs, etc.
You also may never get a good answer to a question like this, so despite that I am not an absolute expert on Office development, I have had my own experience with frustrating bugs like this and so I'll share my 2 cents. This may not be satisfying, but after experiencing similar behavior using office automation objects, my general understanding is that interaction between OS processes are not deterministic. Especially since VBA generally has no threading or parallelism concerns, it can be strange to deal with objects that behave in unpredictable ways. The time slices given to each process separately is at the mercy of the OS and it will vary greatly with multiple processors/cores, running processes, memory management, etc. Despite the purpose of the automation objects--to control instances of office apps--the API's are not designed well for inter-application processes.
Although it would be great if old automation code would produces more useful errors, perhaps nested exceptions (like in .Net and other modern environments), something that indicates delays and timeouts within callbacks between automation objects, instead you get hodgepodge of various context errors.
My hardware is old, but still ticking. I often get delays, even if only for a second, when switching between apps, etc. Instead of thinking of it as an error, I just perceive it as a slow machine, just wait and continue. It may be useful to consider these type of random errors as similar delays. If a wait call here or there resolves the issue, however annoying, that may just be the best solution... wait and continue.
Every now and then after debugging these types of issues I would actually discover the underlying problem and be able to fix it. At the least I would be able to avoid actual problems with the data, despite errors being raised, just like you describe. But even when I felt that I understood the problem, the answer was still often to do exactly as you have done and just add a short wait.
I do believe now this is a timing issue. After thinking things through, I realized that I could easily (well 3 hours later) separate the database info from the spreadsheet info and then move the updated code that is causing problems into an Excel Macro. I then called that macro from Access. Not only do the errors go away, but it runs about 4 times faster. It's not surprising, I just hadn't thought of that direction before.

Xlib: sequence lost in reply type 0x2

i had an occurrence of this error (Xlib: sequence lost in reply type 0x2) in a program i'm maintaining (i'm not the original developer).
I'm far from being an expert in Xlib programming, and i included motif in the tag only because this program was written using that toolkit.
I did some research before posting, and found out that this error is probably due to a thread (different from the UI's one) which is trying to update the UI itself. Searching in the code i found some calls to XTestFakeKeyEvent and XtIsManaged which i'm sure are used in a different thread from the UI.
My question is: could these two functions originate this error?
I would think that only functions that do update the GUI (e.g. set the text of a label) could cause problems of that sort (and these 2 functions don't seem to directly impact the gui), but i honestly don't know....
XTestFakeKeyEvent is most likely the culprit. It injects a key press/release event, which could mess up the event queue.
XtIsManaged will not cause a change, but may give the wrong result if the managed state is changed during it's execution.

How Do I Choose Between the Various Ways to do Threading in Delphi?

It seems that I've finally got to implement some sort of threading into my Delphi 2009 program. If there were only one way to do it, I'd be off and running. But I see several possibilities.
Can anyone explain what's the difference between these and why I'd choose one over another.
The TThread class in Delphi
AsyncCalls by Andreas Hausladen
OmniThreadLibrary by Primoz Gabrijelcic (gabr)
... any others?
Edit:
I have just read an excellent article by Gabr in the March 2010 (No 10) issue of Blaise Pascal Magazine titled "Four Ways to Create a Thread". You do have to subscribe to gain content to the magazine, so by copyright, I can't reproduce anything substantial about it here.
In summary, Gabr describes the difference between using TThreads, direct Windows API calls, Andy's AsyncCalls, and his own OmniThreadLibrary. He does conclude at the end that:
"I'm not saying that you have to choose anything else than the classical Delphi way (TThread) but it is still good to be informed of options you have"
Mghie's answer is very thorough and suggests OmniThreadLibrary may be preferable. But I'm still interested in everyone's opinions about how I (or anyone) should choose their threading method for their application.
And you can add to the list:
. 4. Direct calls to the Windows API
. 5. Misha Charrett's CSI Distributed Application Framework as suggested by LachlanG in his answer.
Conclusion:
I'm probably going to go with OmniThreadLibrary. I like Gabr's work. I used his profiler GPProfile many years ago, and I'm currently using his GPStringHash which is actually part of OTL.
My only concern might be upgrading it to work with 64-bit or Unix/Mac processing once Embarcadero adds that functionality into Delphi.
If you are not experienced with multi-threading you should probably not start with TThread, as it is but a thin layer over native threading. I consider it also to be a little rough around the edges; it has not evolved a lot since the introduction with Delphi 2, mostly changes to allow for Linux compatibility in the Kylix time frame, and to correct the more obvious defects (like fixing the broken MREW class, and finally deprecating Suspend() and Resume() in the latest Delphi version).
Using a simple thread wrapper class basically also causes the developer to focus on a level that is much too low. To make proper use of multiple CPU cores a focus on tasks instead of threads is better, because the partitioning of work with threads does not adapt well to changing requirements and environments - depending on the hardware and the other software running in parallel the optimum number of threads may vary greatly, even at different times on the same system. A library that you pass only chunks of work to, and which schedules them automatically to make best use of the available resources helps a lot in this regard.
AsyncCalls is a good first step to introduce threads into an application. If you have several areas in your program where a number of time-consuming steps need to be performed that are independent of each other, then you can simply execute them asynchronously by passing each of them to AsyncCalls. Even when you have only one such time-consuming action you can execute it asynchronously and simply show a progress UI in the VCL thread, optionally allowing for cancelling the action.
AsyncCalls is IMO not so good for background workers that stay around during the whole program runtime, and it may be impossible to use when some of the objects in your program have thread affinity (like database connections or OLE objects that may have a requirement that all calls happen in the same thread).
What you also need to be aware of is that these asynchronous actions are not of the "fire-and-forget" kind. Every overloaded AsyncCall() function returns an IAsyncCall interface pointer that you may need to keep a reference to if you want to avoid blocking. If you don't keep a reference, then the moment the ref count reaches zero the interface will be freed, which will cause the thread releasing the interface to wait for the asynchronous call to complete. This is something that you might see while debugging, when exiting the method that created the IAsyncCall may take a mysterious amount of time.
OTL is in my opinion the most versatile of your three options, and I would use it without a second thought. It can do everything TThread and AsyncCalls can do, plus much more. It has a sound design, which is high-level enough both to make life for the user easy, and to let a port to a Unixy system (while keeping most of the interface intact) look at least possible, if not easy. In the last months it has also started to acquire some high-level constructs for parallel work, highly recommended.
OTL has a few dozen samples too, which is important to get started. AsyncCalls has nothing but a few lines in comments, but then it is easy enough to understand due to its limited functionality (it does only one thing, but it does it well). TThread has only one sample, which hasn't really changed in 14 years and is mostly an example of how not to do things.
Whichever of the options you choose, no library will eliminate the need to understand threading basics. Having read a good book on these is a prerequisite to any successful coding. Proper locking for example is a requirement with all of them.
There is another lesser known Delphi threading library, Misha Charrett's CSI Application Framework.
It's based around message passing rather than shared memory. The same message passing mechanism is used to communicate between threads running in the same process or in other processes so it's both a threading library and a distributed inter-process communication library.
There's a bit of a learning curve to get started but once you get going you don't have to worry about all the traditional threading issues such as deadlocks and synchronisation, the framework takes care of most of that for you.
Misha's been developing this for years and is still actively improving the framework and documentation all the time. He's always very responsive to support questions.
TThread is a simple class that encapsulates a Windows thread. You make a descendant class with an Execute method that contains the code this thread should execute, create the thread and set it to run and the code executes.
AsyncCalls and OmniThreadLibrary are both libraries that build a higher-level concept on top of threads. They're about tasks, discrete pieces of work that you need to have execute asynchronously. You start the library, it sets up a task pool, a group of special threads whose job is to wait around until you have work for them, and then you pass the library a function pointer (or method pointer or anonymous method) containing the code that needs to be executed, and it executes it in one of the task pool threads and handles a lot of the the low-level details for you.
I haven't used either library all that much, so I can't really give you a comparison between the two. Try them out and see what they can do, and which one feels better to you.
(sorry, I don't have enough points to comment so I'm putting this in as an answer rather than another vote for OTL)
I've used TThread, CSI and OmniThread (OTL). The two libraries both have non-trivial learning curves but are much more capable than TThread. My conclusion is that if you're going to do anything significant with threading you'll end up writing half of the library functionality anyway, so you might as well start with the working, debugged version someone else wrote. Both Misha and Gabr are better programmers than most of us, so odds are they've done a better job than we will.
I've looked at AsyncCalls but it didn't do enough of what I wanted. One thing it does have is a "Synchronize" function (missing from OTL) so if you're dependent on that you might go with AynscCalls purely for that. IMO using message passing is not hard enough to justify the nastiness of Synchronize, so buckle down and learn how to use messages.
Of the three I prefer OTL, largely because of the collection of examples but also because it's more self-contained. That's less of an issue if you're already using the JCL or you work in only one place, but I do a mix including contract work and selling clients on installing Misha's system is harder than the OTL, just because the OTL is ~20 files in one directory. That sounds silly, but it's important for many people.
With OTL the combination of searching the examples and source code for keywords, and asking questions in the forums works for me. I'm familiar with the traditional "offload CPU-intensive tasks" threading jobs, but right now I'm working on backgrounding a heap of database work which has much more "threads block waiting for DB" and less "CPU maxed out", and the OTL is working quite well for that. The main differences are that I can have 30+ threads running without the CPU maxing out, but stopping one is generally impossible.
I know this isn't the most advanced method :-) and maybe it has limitations too, but I just tried System.BeginThread and found it quite simple - probably because of the quality of the documentation I was referring to... http://www.delphibasics.co.uk/RTL.asp?Name=BeginThread (IMO Neil Moffatt could teach MSDN a thing or two)
That's the biggest factor I find in trying to learn new things, the quality of the documentation, not it's quantity. A couple of hours was all it took, then I was back to the real work rather than worrying about how to get the thread to do it's business.
EDIT actually Rob Kennedy does a great job explaining BeginThread here BeginThread Structure - Delphi
EDIT actually the way Rob Kennedy explains TThread in the same post, I think I'll change my code to use TThread tommorrow. Who knows what it will look like next week! (AsyncCalls maybe)

Convert MFC Doc/View to?

My question will be hard to form, but to start:
I have an MFC SDI app that I have worked on for an embarrassingly long time, that never seemed to fit the Doc/View architecture. I.e. there isn't anything useful in the Doc. It is multi-threaded and I need to do more with threading, etc.
I dream about also porting it to Linux X Windows, but I know nothing about that programming environment as yet. Maybe Mac also.
My question is where to go from here?
I think I would like to convert from MFC Doc/View to straight Win API stuff with message loops and window procedures, etc. But the task seems to be huge.
Does the Linux X Windows environment use a similar kind of message loop, window procedure architecture?
Can I go part way? Like convert a little at a time without rendering my program unusable for long periods of work?
Added later:
My program is a file compare program (sounds simple enough.) So, stating my confusion in a simple way, normally a document can have multiple views, but in this app, I have one view with multiple (two) documents (files). I have a "compare engine" that I first wrote back in the DOS days, that is the heart of the program and the view is just looking at the output of that routine. Sometimes I think that some of my "view" code could make sense in a "document" class but I hardly know where to begin to separate it into more classes. I have recently started reading "Programming Windows" 5th Ed. by Charles Petzold, (I know that is quite out of date (C) 1998) hoping to get a better understanding of direct Windows programming.
I get overwhelmed with the proliferation of options like C#, NET, MFC, MVC, Qt, wxWidgets, etc.
I find I am often stuck trying to understand something going on in the MFC framework because something in my code doesn't work as it seems it should, but the problem is that I don't really understand how MFC is handling things in the background. That is why I am trying to learn "straight Windows programming" where my program has all the message passing code that I write. I hope this helps give enough insight into my question so someone can guide me on my way.
X works enough differently that a raw Windows program and a raw X program probably wouldn't be able to share much UI code at all.
If you want portability between the two, chances are pretty good that you want to use something like Qt or wxWidgets. Of the two, wxWidgets is more similar to MFC, so it would probably require less rewriting, but would maintain (more or less) the same "disconnect" you're seeing between what you want and what it provides.
Without knowing more about your application, and why it doesn't fit well with MFC, it's impossible to guess whether Qt would be a better fit or not. An immediate guess would be "probably not".
MFC uses a "document/view" architecture, where Qt uses the original Model-View-Controller architecture. For the most part, MFC's Document class is equivalent basically a Model and a Controller rolled into one -- so if your Document contains nothing useful, in Qt you'd apparently have both a Model and a Controller, neither of which did much that was useful.
That said, I have to raise a question about why your Document currently doesn't do much. The MVC pattern has proven applicable to a wide variety of problems, so while it's possible it can't work well for your problem, it's also possible that it could work well, and you're simply not using it. Without knowing more about what you're doing, it's impossible to even guess at that though.
Edit: Okay, the clarification helps quite a bit. The first thing to realize is that a Document does not necessarily equate to a file. Quite the contrary, a document can perfectly reasonably relate to an arbitrary number of files.
Just for example, consider a web browser. All the data needed to compose the page its currently displaying would reasonably be part of the same document. Depending on your viewpoint, that's either zero files, or a whole bunch of them (it will start as an arbitrary number of files coming from the server(s), but won't necessarily be stored as files locally at all). Storing any of it as a file locally will be a (more or less) accidental by-product of caching, and mostly unrelated to browsing per se.
In your case, you're presumably reading the two (or three?) files into memory and storing them along with some sort of data structure to hold the result of the comparison. After the comparison is complete, you might or might not discard the contents of the files themselves. I think it's safe to say that the "normal" separation of responsibilities would be for that data and the code that produces that data to be in the Document.
The View should contain only the code to take that result from that data structure, and display it on screen. Nearly the only data you normally want to store in the View would be things related to how the data is presented (e.g., things like a zoom level or current scroll position). Likewise, the code in the view should relate only to displaying the result and reacting to user input, NOT to "creating" the data in the first place.
As such, I think your program could be rewritten to use the Document/View pattern more effectively, or could be rewritten to use MVC. That, in turn, means a port to Qt could/would probably work just fine -- provided you're willing to put some time and effort into understanding how it's intended to work and then make what may be fairly substantial changes to your code to work the way it's designed to.
As I commented previously, wxWidgets is more like MFC in this respect -- it uses a Document and View, not a Model, View, and Controller. It's also going to work best if you do some rewriting to separate responsibilities the way it's designed for. The good point is that it's probably a bit easier to do that one step at a time: rewrite the code in MFC, which which you're already familiar, and then port it to wxWidgets -- but given the similarity between the two, that "Port" will probably be little more than minor editing -- often just changing some names from C* to wx* is just about enough. To my recollection, the only place I've run into much work was in creating menus -- with MFC they're normally handled via resources, but (at least a few years ago when I used it) wxWidgets normally directly exposed the code that created the menu entries.
Porting to Qt would probably be more work -- you pretty much have to learn a new framework, and substantially reorganize your code at the same time. The good point is that when you're done, the result will probably be somewhat cleaner, though given what you're doing, the difference may be pretty minor. In a Document/View, the View displays data, and reacts to user input. In a Model/View/Controller, the View only displays data, but user input (that modifies the underlying data) goes through the Controller. Since you (presumably) don't expect to modify the underlying data, the only user input involved probably belongs in the view in any case (e.g., things like scrolling). It's barely possible you might have a few things you could put in the Document/Model that would be open to change (e.g., things like the current font or colors the user has selected).

Cross thread communication in Delphi

Is there any documentation on cross thread communication in Delphi? How can I send message to the thread that doesn't have a window?
You can only send (Windows) messages to threads that implement a standard message loop, which will automatically be created once a window handle is realized.
It is however not necessary to use messages to communicate with a thread. Just let it wait on an event object (TEvent in VCL), and signal this event when you want the thread to perform a function.
But if you are new to multi-threading - don't go into all these details on your own, unless you want to for the learning effect. Just use the OmniThreadLibrary and be done with it. There's much good to be learned by digging into its internals, once you know how to use it.
Edit:
See also the answers to this question which is very similar.
Edit 2:
Regarding the comment asking "What does [OmniThreadLibrary] make easier, and at what cost?" I can only advise you to check it out for yourself - that is if you are using at least Delphi 2007. There are several samples to illustrate the concepts, but for a quick "real-life" example you could have a look at this blog post - you don't even need to install the library for that.
I do also agree that using a library for multi-threading does require a certain act of faith. OTOH making do with what the VCL provides is hardly an alternative. The sample code does still use the ill-conceived Synchronize() call. There is no support for things like thread-safe producer-consumer-queues, which are much more suited to multi-threaded programming. And if you do agree that you need a more solid fundament for your multi-threaded programs than the VCL provides - why reinvent that particular wheel?
As for the cost of using the library: You will have to time yourself whether it is fast enough for you. It does abstract the communication between threads in a good way IMHO, but every abstraction costs performance, obviously.
If you decide that it is not for you after all - write the code yourself. I did the same for Delphi 4, and I have been using that code for nearly 10 years now. And judging by the amount of bugs I found and corner cases I experienced in that time, I would definitely advise anybody new to multi-threading to not write their own library code for it. And if you really really want to, please take the rules in this posting to heart.
The question Delphi Multi-Threading Message Loop also contains a few examples of communication between threads
If you have a reference to the thread object, you can just call it direct, and have the procedure store information or update accordingly. Obviously you have to be careful to do things in a thread safe manner.
Alternatively, you could use a central control object through which the threads communicate when they aren't busy. I have an app where threads have particular purposes, and are allocated a thread-ID. Any thread can "post" a message with a message-ID and a string for parameters to another thread-ID and then get on with its work. The other thread the picks it up at its leisure, and acts accordingly.

Resources