DDA Algorithm and Bresenham Algorithm - graphics

I have been studying DDA and Bresenham algorithms for line drawing and am curious about one thing.In both the algorithms,we consider a pixel grid to be of unit size and perform further steps.My question is if I change my grid size to say 0.5*0.5 instead of 1*1 grid,will there be any changes reflected in the way both algorithms work.If yes,can somebody enlighten me as to what those changes will be in each algorithm respectively.Very curious to know.Thanks for your answers in advance.Anybody who can help,please do so,since it urgent.I have an exam and I want this concept clarified.Please.Thanks:)

Related

Most efficient and effective way to create a surface from 3d points

Say I had a point cloud with n number of points in 3d space(relatively densely packed together). What is the most efficient way to create a surface that goes contains every single point in it and lets me calculate values such as the normal and curvature at some point on the surface that was created? I also need to be able to create this surface as fast as possible(a few milliseconds hopefully working with python) and it can be assumed that n < 1000.
There is no "most efficient and effective" way (this is true of any problem in any domain).
In the first place, the surface you have in mind is not mathematically defined uniquely.
A possible approach is by means of the so-called Alpha-shapes, implemented either from a Delaunay tetrahedrization, or by the ball-pivoting method. For other methods, lookup "mesh reconstruction" or "surface reconstruction".
On another hand, normals and curvature can be computed locally, from neighbors configurations, without reconstructing a surface (though there is an ambiguity on the orientation of the normals).
I could suggest Nina Amenta's Power Crust algorithm (link to code), or also meshlab suite, which can compute the curvatures too.

Are there existing tools that raytrace triangle meshes?

Disclaimer: I'm not 100% on whether this is a well-formed question, so please feel free to comment and suggest improvements. I'll be actively looking out for ways to improve this question.
I have a triangle mesh, let's say the Stanford Bunny. Now, I want to raycast a ray from a source point in 3D along a 3D direction vector, and identify just the first intersection of that ray with the triangle mesh.
I already have a naive implementation cooked up. However, I'm looking for a more advanced implementation. In particular, I'll be casting many millions of rays in many directions, so I'm looking for a multi-threaded or GPU-accelerated implementation.
I have to believe that there must be some pretty complete projects online, as raycasting triangle meshes is a fundamental part of 3D computer graphics. However, I can't find anything beyond personal projects, which leads me to believe that I am using the wrong search terms, or something pretty simple along those lines.
I am looking for suggestions on existing tools that can raytrace polygonal meshes.
If all you need to do is find the distance to the mesh for millions of rays. Then it might be a good idea to look up CUDA raytracing tutorial online. This will show you how to cast many millions of rays. In most tutorials, raytracing is used to render to the screen with the camera matrix. However, this is not necessary. Simply adjust the rays starting parameters to what you need them to be such as 3D vector and position. Then output the data back to the CPU. Be weary of the bandwidth between the GPU and CPU sending millions of intersection points between the CPU and GPU can make the program run exceptionally slow.

Algorithm for cutting a mesh using another mesh

I am looking for an algorithm that given two meshes could clip one using another.
The simplest form of this is clipping a mesh using a plane. I've already implemented that by following something similar to what is described here.
What it does is basically inspecting all mesh vertices and triangles with respect to the plane (the plane's normal and point are given). If the triangle is completely above the plane, it is left untouched. If it falls completely below the plane, it is discarded. If some of the edges of the triangle intersect with the plane, the intersecting points with the plane are calculated and added as the new vertices. Finally a cap is generated for the hole on the place the mesh was cut.
The problem is that the algorithm assumes that the plane is unlimited, therefore whatever is in its path is clipped. In the simplest form, I need an extension of this without the assumption of a plane of "infinite" size.
To clarify, imagine that we have a 3D model of a desk with 2 boxes on it. The boxes are adjacent (but not touching or stacked). The user will define a cutting plane of a limited width and height underneath the first box and performs the cut. We end up with a desk model (mesh) with a box on it and another box (mesh) that can be freely moved around/manipulated.
In the general form, I'd like the user to be able to define a bounding box for the box he/she wants to separate from the desk model and perform the cut using that bounding box.
If I could extend the algorithm I already have to an algorithm with limited-sized planes, that would be great for now.
What you're looking for are constructive solid geometry/boolean algorithms with arbitrary meshes. It's considerably more complex than slicing meshes by an infinite plane.
Among the earliest and simplest research in this area, and a good starting point, is Constructive Solid Geometry for Polyhedral Objects by Trumbore and Hughes.
http://cs.brown.edu/~jfh/papers/Laidlaw-CSG-1986/main.htm
From the original paper:
More elaborate solutions extend upon this subject with a variety of data structures.
The real complexity of the operation lies in the slicing algorithm to slice one triangle against another. The nightmare of implementing robust CSG lies in numerical precision. It's easy when you involve objects far more complex than a cube to run into cases where a slice is made just barely next to a vertex (at which point you have the tough decision of merging the new split vertex or not prior to carrying out more splits), where polygons are coplanar (or almost), etc.
So I suggest initially erring on the side of using very high-precision floating point numbers, possibly even higher than double precision to focus on getting something working correctly and robustly. You can optimize later (first pass should be to use an accelerator like an octree/kd-tree/bvh), but you'll avoid many headaches this way in your first iteration.
This is vastly simpler to implement at render time if you're focusing on a raytracer rather than a modeling software, e.g. With raytracers, all you have to do to do this kind of arbitrary clipping is pretend that an object used to subtract from another has its polygons flipped in the culling process, e.g. It's easy to solve robustly at the ray level, but quite a bit harder to do robustly at the geometric level.
Another thing you can do to make your life so much easier if you can afford it is to voxelize your object, find subtractions/additions/unions of voxels, and then translate the voxels back into a mesh. This is so much easier to make robust, but harder to do efficiently and the voxel->polygon conversion can get quite involved if you want better results than what marching cubes provide.
It's a really tough area to do extremely well and requires perseverance, and thus the reason for the existence of things like this: http://carve-csg.com/about.
If someone is interested, currently there is a solution for this problem in CGAL library. It allows clipping one triangular mesh using another mesh as bounding volume. The usage example can be found here.

intersection of two triangle meshes

Currently I am looking for an efficient algorithm to compute the intersection of two triangle meshes. I have searched over the internet, but haven't found valuable materials. The book Real-Time Collision Detection is a helpful book but is too complex for my task. I also found the post:Triangle to triangle collision detection in 3D. However I hope to find a detailed description about the algorithm.
Regards
Jogging
Well it depends on meshes size, testing each triangle in each mesh against the other is only valid in small meshes since it has n^2 complexity.
To work around that most algorithms use
Spatial portioning
first to subdivide the space into smaller ones and then tackles each one separately.
For spatial portioning most algorithms use
OcTrees
or BSPTrees however if you don't need to complicate things you can just subdivide the space into n boxes then check triangle triangle intersection in each box

2D shape optimization through genetic algorithms

I just recently started learning about genetic algorithms and am now trying to implement them in 2D shape optimization in physics simulaiton. The simulation produces a single scalar for each shape. (I guess this is kind of similar to boxcar2d http://boxcar2d.com/)
The 2D shapes are actually the union of several 2D "sub shapes." Each subshape is stored as an list of angles/radii. The 2D shape is then stored as a list of subshape lists. This serves as my chromosone right now.
Right now for fitness, I will probably use the scalar the simulation produced. My question is, how should I go about the selection and reproduction process? Would tournament be more appropriate, or would I want to use truncation in combination with the proportional selection? Also, how do you find a good mutation rate/population size, etc
sorry for so many questions but thanks in advance. I just don't really know where to start.
On my point of view the best way is to use adaptive reproduction strategy during evolution: at the first steps (let name it - "the first phase of calculations") you might set high mutation probability, at this phase you should find enough good solution. At the "second phase" of algorithm you might set decreasing of mutation probability every few steps - at this phase you should improve your solution. But sometimes in my practice I've noticed degradation of population during second phase of optimization (when each chromosome is strongly similar to other) - which effects with extremly slowing down of optimization pperformance, so my solution was to improve algorithm with high valued mutation random perturbations and it helps.
Also I'll advice you to read about differential evolution algorithm - http://en.wikipedia.org/wiki/Differential_evolution. As for me it's performance is much more faster than genetic algorithm.

Resources