My understanding is that Wine directly executes the machine code contained in a PE executable. Assuming this is correct, what happens if the machine code contains a system call, which would obviously not be understood by Linux? Does Wine somehow intercept them? If so, how exactly does it work?
I tried to find the answer in Wine's source code, but found it daunting. I couldn't even find the place where the machine code is actually executed.
Related
i want to modify the system kernell for linux, i want to change the open system call, so when i try to open one file, i want to open another one, but i cannot find where in the open.c file this can be done and which variables to work with, would appreciate some information. There are a lot of syscalls_defines in the open systemcall, but i do not understand which one of them i could work with. I have tried to add some printk() functions into some functions in the open.c, and when i sudo dmesg i get there output, but i still can't find exactly which functions that open.c calls and which function to modify.
Not exactly sure what you want to achieve, but if you just want to hijack the open system call without the malign intention of applying this to all processes on a machine, you don't need to tinker with the kernel. Using shared library magic with LD_PRELOAD, and redefining the libc system call wrapper would probably be enough.
You can find how to do this with read and write here. But the idea is the same with any system call.
I'm trying to create a Linux software in C++ which need to run code in a protected environment on x86 and x86-64 processor.
My problem is to find a way to run code in protected environment, first, only on x86-64 (it's a technical part of processors way of working), I have see Local Descriptors Table, but I found it no more works on x86-64. I also heard about the Intel VT technology, but documents seems very complicated.
Have you any idea of ways to run code in a protected environment on linux and x86-64 inside a process?
My goal is to create something like an OS inside a linux process.
Like Windows or Linux does, I want the program runned inside my protected environment no to access part of my software, and make systemcall if needed. I believe I have found a way to do so, I esxplain it below.
I have found a way to do what I want:
Each time my program will switch from main part to the program inside, it will use mprotect (a function of Glibc on Linux) to change the right to access to lot of part of the memory of the process.
Each time the program inside will make a systemcall to my program, it will change back the right to access to the memory.
You may thinks it stays security issues, because the program inside can run any kind of code and access to system call to linux and so can access to not allowed things. But I believe I can use a tricky which would prohibit the code inside to start any kind of opcodes.
The Wikipedia page on Core dump says
In Unix-like systems, core dumps generally use the standard executable
image-format:
a.out in older versions of Unix,
ELF in modern Linux, System V, Solaris, and BSD systems,
Mach-O in OS X, etc.
Does this mean a core dump is executable by itself? If not, why not?
Edit: Since #WumpusQ.Wumbley mentions a coredump_filter in a comment, perhaps the above question should be: can a core dump be produced such that it is executable by itself?
In older unix variants it was the default to include the text as well as data in the core dump but it was also given in the a.out format and not ELF. Today's default behavior (in Linux for sure, not 100% sure about BSD variants, Solaris etc.) is to have the core dump in ELF format without the text sections but that behavior can be changed.
However, a core dump cannot be executed directly in any case without some help. The reason for that is that there are two things missing from a simple core file. One is the entry point, the other is code to restore the CPU state to the state at or just before the dump occurred (by default also the text sections are missing).
In AIX there used to be a utility called undump but I have no idea what happened to it. It doesn't exist in any standard Linux distribution I know of. As mentioned above (#WumpusQ) there's also an attempt at a similar project for Linux mentioned in above comments, however this project is not complete and doesn't restore the CPU state to the original state. It is, however, still good enough in some specific debugging cases.
It is also worth mentioning that there exist other ELF formatted files that cannot be executes as well which are not core files. Such as object files (compiler output) and .so (shared object) files. Those require a linking stage before being run to resolve external addresses.
I emailed this question the creator of the undump utility for his expertise, and got the following reply:
As mentioned in some of the answers there, it is possible to include
the code sections by setting the coredump_filter, but it's not the
default for Linux (and I'm not entirely sure about BSD variants and
Solaris). If the various code sections are saved in the original
core-dump, there is really nothing missing in order to create the new
executable. It does, however, require some changes in the original
core file (such as including an entry point and pointing that entry
point to code that will restore CPU registers). If the core file is
modified in this way it will become an executable and you'll be able
to run it. Unfortunately, though, some of the states are not going to
be saved so the new executable will not be able to run directly. Open
files, sockets, pips, etc are not going to be open and may even point
to other FDs (which could cause all sorts of weird things). However,
it will most probably be enough for most debugging tasks such running
small functions from gdb (so that you don't get a "not running an
executable" stuff).
As other guys said, I don't think you can execute a core dump file without the original binary.
In case you're interested to debug the binary (and it has debugging symbols included, in other words it is not stripped) then you can run gdb binary core.
Inside gdb you can use bt command (backtrace) to get the stack trace when the application crashed.
Friends, I am working on an in-house architectural simulator which is used to simulate the timing-effect of a code running on different architectural parameters like core, memory hierarchy and interconnects.
I am working on a module takes the actual trace of a running program from an emulator like "PinTool" and "qemu-linux-user" and feed this trace to the simulator.
Till now my approach was like this :
1) take objdump of a binary executable and parse this information.
2) Now the emulator has to just feed me an instruction-pointer and other info like load-address/store-address.
Such approaches work only if the program content is known.
But now I have been trying to take traces of an executable running on top of a standard linux-kernel. The problem now is that the base kernel image does not contain the code for LKM(Loadable Kernel Modules). Also the daemons are not known when starting a kernel.
So, my approach to this solution is :
1) use qemu to emulate a machine.
2) When an instruction is encountered for the first time, I will parse it and save this info. for later.
3) create a helper function which sends the ip, load/store address when an instruction is executed.
i am stuck in step2. how do i differentiate between different processes from qemu which is just an emulator and does not know anything about the guest OS ??
I can modify the scheduler of the guest OS but I am really not able to figure out the way forward.
Sorry if the question is very lengthy. I know I could have abstracted some part but felt that some part of it gives an explanation of the context of the problem.
In the first case, using qemu-linux-user to perform user mode emulation of a single program, the task is quite easy because the memory is linear and there is no virtual memory involved in the emulator. The second case of whole system emulation is a lot more complex, because you basically have to parse the addresses out of the kernel structures.
If you can get the virtual addresses directly out of QEmu, your job is a bit easier; then you just need to identify the process and everything else functions just like in the single-process case. You might be able to get the PID by faking a system call to get_pid().
Otherwise, this all seems quite a bit similar to debugging a system from a physical memory dump. There are some tools for this task. They are probably too slow to run for every instruction, though, but you can look for hints there.
I want to use ptrace to write a piece of binary code in a running process's stack.
However, this causes segmentation fault (signal 11).
I can make sure the %eip register stores the pointer to the first instruction that I want to execute in the stack. I guess there is some mechanism that linux protects the stack data to be executable.
So, does anyone know how to disable such protection for stack. Specifically, I'm trying Fedora 15.
Thanks a lot!
After reading all replies, I tried execstack, which really makes code in stack executable. Thank you all!
This is probably due to the NX bit on modern processors. You may be able to disable this for your program using execstack.
http://advosys.ca/viewpoints/2009/07/disabling-the-nx-bit-for-specific-apps/
http://linux.die.net/man/8/execstack
As already mentioned it is due to the NX bit. But it is possible. I know for sure that gcc uses it itself for trampolines (which are a workaround to make e.g. function pointers of nested functions). I dont looked at the detailes, but I would recommend a look at the gcc code. Search in the sources for the architecture specific macro TARGET_ASM_TRAMPOLINE_TEMPLATE, there you should see how they do it.
EDIT: A quick google for that macro, gave me the hint: mprotect is used to change the permissions of the memory page. Also be carefull when you generate date and execute it - you maybe have in addition to flush the instruction cache.