Is multithreading what i'm looking for? - multithreading

I'm working on a program that would benefit from using multiple cpu cores. In the past while working on similar programs my cpu would max out at ~25% and I had quad core processor so will the threads distribute to the other available cores? Im a newbie when it comes to multithreading so excuse me I something stated above makes absolutely no sense.

Yes, you seem to have correct understanding of the problem.
When you write a single threaded program it cannot be shared/split among multiple cores. So writing a multi-threaded program may make use of multiple cores.

Related

Are Tcl threads multi process/multi core

I'm new to using threads in tcl but thought it was a nice way to solve a problem I'm having
I was trying to read through the tcl thread documentation but i can't quite figure out if tcl threads span threads across multiple cpu cores or try to keep all threads within the CPU core from which the master process was started?
Tcl's threads are threads as supported by the operating system's standard libraries (e.g., they're normal POSIX threads on Linux and OSX), and so are entirely capable of running over as many cores as the OS allows.
Tcl takes care to limit the use of locks in its implementation as much as possible, so as to make multi-core operation as efficient as possible; this came from experience supporting high-performance application servers in the 1990s, where it turned out that reducing the sharing of resources was a big win as hardware scaled up the number of cores.
It also means that you've got a non-shared memory model based on structured message passing; it scales well, but it was very different to what most programmers knew at the time. It's a little bit more mainstream now because shared-memory parallelism remains annoyingly troublesome on modern hardware.

Multi-thread code with single-core processor and single-thread code with multi-core processor

I'm new to multi-threaded programming. I have been reading some articles, but two main points I'm not completely sure about.
If I have a single-thread code (sequential), and I run it on multi-core processor. Will the OS try to divide the thread into multiple threads (while taking care of dependencies) to take advantage of the muli-core processor?
If I have a multi-thread code, and I run it on single-core processor. Will the OS make time-sharing between different threads (the same way it does with multiple processes)?
1) No
If an application makes use of, for example, the Intel maths libraries and has been compiled with the right switches, routines like FFTs will at runtime be split out into separate threads matching the number of cores in the machine. Your source code remains 'single threaded', but the library is creating and destroying threads behind your back.
Similarly some compilers (e.h. Intel's icc, Sun's C compiler) may turn some loops into separate threads, each tackling a share of the iterations. Again the source code looks single threaded, but the compiler generates threaded code on your behalf. It's a bit like automatically applying some OpenMP to your source code.
OSes cannot second guess what an application is going to do, so they cannot intervene like this. Libraries and compilers know what is about to happen, so they can.
Libraries and compiler tricks like this have been developed so as to make it easy for programmers to extract higher performance from 'single' threaded code. Intel started adding features like that to their maths library around about the same time they started heading towards multi-core CPUs. The idea was to create (from the programmer's point of view) the impression of better 'single' thread performance, whilst the speed was actually being delivered by multiple cores. Similarly with Sun when they started doing multi-processor computers.
And with everyone more or less giving up on making significant improvements to the performance of a single core, this is the only way ahead.
2) Yes. How else would it do it?
No, the operating system has not enough information to do that. In parallelization you need to consider the dependencies between operations. Some compiler try to do that, they have more information about the intent of the code. But even they often fail to do that effectively.
Yes, for example the Linux scheduler does not even distinguish between threads and processes.

OpenMPI vs OpenMP execution efficiency

I've been studying the efficiency of parallelizing Dijkstra Algorithm using both OpenMPI and OpenMP. In fact, when I use OpenMP, the execution time appears to be higher than using OpenMPI which is a bit strange to me since as far as I know threads are supposed to be faster than processes. OpenMPI creates a process for each execution while OpenMP creates threads under each process execution. My question is: Is my finding implementation dependent? In other word, can we always say parallelizing with OpenMP cannot be always faster than OpenMPI since it is an implementation dependent?
Thank you.
As always, it all depends on your current circumstances. OpenMP works only on your local CPU, whereas OpenMPI connects to several nodes over a network. As long as you can only split your work over as many threads as your have local CPU cores, OpenMP should be faster, because there is less messaging overhead. In lager scaling appliances, OpenMPI is superior, because it can be distributed across several systems, which also may have a better individual computation speed.

Is there a point to multithreading?

I don’t want to make this subjective...
If I/O and other input/output-related bottlenecks are not of concern, then do we need to write multithreaded code? Theoretically the single threaded code will fare better since it will get all the CPU cycles. Right?
Would JavaScript or ActionScript have fared any better, had they been multithreaded?
I am just trying to understand the real need for multithreading.
I don't know if you have payed any attention to trends in hardware lately (last 5 years) but we are heading to a multicore world.
A general wake-up call was this "The free lunch is over" article.
On a dual core PC, a single-threaded app will only get half the CPU cycles. And CPUs are not getting faster anymore, that part of Moores law has died.
In the words of Herb Sutter The free lunch is over, i.e. the future performance path for computing will be in terms of more cores not higher clockspeeds. The thing is that adding more cores typically does not scale the performance of software that is not multithreaded, and even then it depends entirely on the correct use of multithreaded programming techniques, hence multithreading is a big deal.
Another obvious reason is maintaining a responsive GUI, when e.g. a click of a button initiates substantial computations, or I/O operations that may take a while, as you point out yourself.
The primary reason I use multithreading these days is to keep the UI responsive while the program does something time-consuming. Sure, it's not high-tech, but it keeps the users happy :-)
Most CPUs these days are multi-core. Put simply, that means they have several processors on the same chip.
If you only have a single thread, you can only use one of the cores - the other cores will either idle or be used for other tasks that are running. If you have multiple threads, each can run on its own core. You can divide your problem into X parts, and, assuming each part can run indepedently, you can finish the calculations in close to 1/Xth of the time it would normally take.
By definition, the fastest algorithm running in parallel will spend at least as much CPU time as the fastest sequential algorithm - that is, parallelizing does not decrease the amount of work required - but the work is distributed across several independent units, leading to a decrease in the real-time spent solving the problem. That means the user doesn't have to wait as long for the answer, and they can move on quicker.
10 years ago, when multi-core was unheard of, then it's true: you'd gain nothing if we disregard I/O delays, because there was only one unit to do the execution. However, the race to increase clock speeds has stopped; and we're instead looking at multi-core to increase the amount of computing power available. With companies like Intel looking at 80-core CPUs, it becomes more and more important that you look at parallelization to reduce the time solving a problem - if you only have a single thread, you can only use that one core, and the other 79 cores will be doing something else instead of helping you finish sooner.
Much of the multithreading is done just to make the programming model easier when doing blocking operations while maintaining concurrency in the program - sometimes languages/libraries/apis give you little other choice, or alternatives makes the programming model too hard and error prone.
Other than that the main benefit of multi threading is to take advantage of multiple CPUs/cores - one thread can only run at one processor/core at a time.
No. You can't continue to gain the new CPU cycles, because they exist on a different core and the core that your single-threaded app exists on is not going to get any faster. A multi-threaded app, on the other hand, will benefit from another core. Well-written parallel code can go up to about 95% faster- on a dual core, which is all the new CPUs in the last five years. That's double that again for a quad core. So while your single-threaded app isn't getting any more cycles than it did five years ago, my quad-threaded app has four times as many and is vastly outstripping yours in terms of response time and performance.
Your question would be valid had we only had single cores. The things is though, we mostly have multicore CPU's these days. If you have a quadcore and write a single threaded program, you will have three cores which is not used by your program.
So actually you will have at most 25% of the CPU cycles and not 100%. Since the technology today is to add more cores and less clockspeed, threading will be more and more crucial for performance.
That's kind of like asking whether a screwdriver is necessary if I only need to drive this nail. Multithreading is another tool in your toolbox to be used in situations that can benefit from it. It isn't necessarily appropriate in every programming situation.
Here are some answers:
You write "If input/output related problems are not bottlenecks...". That's a big "if". Many programs do have issues like that, remembering that networking issues are included in "IO", and in those cases multithreading is clearly worthwhile. If you are writing one of those rare apps that does no IO and no communication then multithreading might not be an issue
"The single threaded code will get all the CPU cycles". Not necessarily. A multi-threaded code might well get more cycles than a single threaded app. These days an app is hardly ever the only app running on a system.
Multithreading allows you to take advantage of multicore systems, which are becoming almost universal these days.
Multithreading allows you to keep a GUI responsive while some action is taking place. Even if you don't want two user-initiated actions to be taking place simultaneously you might want the GUI to be able to repaint and respond to other events while a calculation is taking place.
So in short, yes there are applications that don't need multithreading, but they are fairly rare and becoming rarer.
First, modern processors have multiple cores, so a single thraed will never get all the CPU cycles.
On a dualcore system, a single thread will utilize only half the CPU. On a 8-core CPU, it'll use only 1/8th.
So from a plain performance point of view, you need multiple threads to utilize the CPU.
Beyond that, some tasks are also easier to express using multithreading.
Some tasks are conceptually independent, and so it is more natural to code them as separate threads running in parallel, than to write a singlethreaded application which interleaves the two tasks and switches between them as necessary.
For example, you typically want the GUI of your application to stay responsive, even if pressing a button starts some CPU-heavy work process that might go for several minutes. In that time, you still want the GUI to work. The natural way to express this is to put the two tasks in separate threads.
Most of the answers here make the conclusion multicore => multithreading look inevitable. However, there is another way of utilizing multiple processors - multi-processing. On Linux especially, where, AFAIK, threads are implemented as just processes perhaps with some restrictions, and processes are cheap as opposed to Windows, there are good reasons to avoid multithreading. So, there are software architecture issues here that should not be neglected.
Of course, if the concurrent lines of execution (either threads or processes) need to operate on the common data, threads have an advantage. But this is also the main reason for headache with threads. Can such program be designed such that the pieces are as much autonomous and independent as possible, so we can use processes? Again, a software architecture issue.
I'd speculate that multi-threading today is what memory management was in the days of C:
it's quite hard to do it right, and quite easy to mess up.
thread-safety bugs, same as memory leaks, are nasty and hard to find
Finally, you may find this article interesting (follow this first link on the page). I admit that I've read only the abstract, though.

Parallel coding Vs Multithreading (on single cpu)

can we use interchangeably "Parallel coding" and "Multithreading coding " on single cpu?
i am not much experience in both,
but i want to shift my coding style to any one of the above.
As i found now a days many single thred application are obsolete, which would be better for future software industy as a career prospect?
There is definitely overlap between multithreading and parallel coding/computing, with the main differences in the target processing architecture.
Multithreading has been used to exploit the benefits of concurrency within a single process on a single CPU with shared memory. Running the same programs on a machine with multiple CPUs may result in significant speedup, but is often a bonus rather than intended (until recently). Many OSes have threading models (e.g. pthreads), which benefit from but do not require multiple CPUs.
Multiprocessing is the standard model for parallel programming targeting multiple CPUs, from early SMP machines with many CPUs on a big machine, then to cluster computing across many machines, and now back to many CPUs/cores on a single computer. MPI is a standard that can work across many different architectures.
Of course, one can program a parallel design using threads with language frameworks like OpenMP. I've heard of multicomponent GUIs/applications that rely on separate processing that could theoretically run anywhere. Practically, there's more of the former than the latter.
Probably the main distinction is when the program runs across multiple machines, where it's not practical to use multithreading, and existing applications that share memory will not work.
Parallel coding is the concept of executing multiple actions in parallel(Same time).
Multi-threaded Programming on a Single Processor
Multi-threading on a single processor gives the illusion of running in parallel. Behind the scenes, the processor is switching between threads depending on how threads have been prioritized.
Multi-threaded Programming on Multiple Processors
Multi-threading on multiple processor cores is truly parallel. Each microprocessor is running a single thread. Consequently, there are multiple parallel, concurrent tasks happening at once.
The question is a bit confusing as you can perform parallel operations in multiple threads, but all multi-thread applications are not using parallel computing.
In parallel code, you typically have many "workers" that consume a set of data to return results asynchronously. But multithread is used in a broader scope, like GUI, blocking I/O and networking.
Being on a single or many CPU does not change much, as the management depends on how your OS can handle threads and processes.
Multithreading will be useful everywhere, parallel is not everyday computing paradigm, so it might be a "niche" in a career prospect.
Some demos I saw in .NET 4.0, the Parallel code changes seem easier then doing threads. There is new syntax for "For Loops" and other things to support parallel processing. So there is a difference.
I think in the future you will do both, but I think the Parallel support will be better and easier. You still need threads for background operations and other things.
The fact is that you cannot achieve "real" parallelism on a single CPU. There are several libraries (such as C's MPI) that help a little bit on this area. But the concept of paralellism it's not that used among developers working on popular solutions.
Multithreading is common these days thanks to the introduction of multiple cores on a single CPU, it's easy and almost transparent to implement in every language thanks to thread libs and threadsafe types, methods, classes and so on. This way you can simulate paralellism.
Anyway, if you're starting with this, start by reading about concurrency and threading topics. And of course, threads + parallelism work good together.
I'm not sure about what do you think "Parallel coding" is but Parallel coding as I understand it refers to producing code which is executed in parallel by the CPU, and therefore Multithreaded code falls inside that description.
In that way, obviously you can use them interchangeably (as one falls inside the other).
Nonetheless I'll suggest you take it slowly and start learning from the basics. Understand WHY multithreading is becoming important, what's the difference between processes, threads and fibers, how do you synchronize either of them and so on.
Keep in mind that parallel coding, as you call it, is quite complex, specially compared to sequential coding so be prepared. Also don't just rush into it. Just because you use 3 threads instead of one won't make your program faster, it can even make it slower. You need to understand the hows and the whys. Not every thing can be made parallel and not everthing that can, should.
in simple Language
multithreading is available in the CPu by itself and
parallel programming is an explicit task either done by the compiler or my constructs written by programmers "#pragma"

Resources