Use non-blocking TClientSocket inside a thread - multithreading

This Embarcadero article describes using a blocking socket inside a thread. If I've created my socket as ctNonBlocking and am only writing simple messages to the socket should I be using TClientWinSocket.SendText:
// Inside TThread::Execute: Option 1
strMessage := 'Hello!';
mySocket.Socket.SendText(strMessage);
or should I be creating a TWinSocketStream and using Write:
// Inside TThread::Execute: Option 2
strMessage := 'Hello!';
stream := TWinSocketStream.Create(mySocket.Socket, 1000);
stream.Write(strMessage[1], Length(strMessage));
What I am finding is that my application throws an exception when exiting (after Application.Run() in the DPR file and impossible to debug) which disappears if I comment out all the TClientSocket code.

You cannot use TWinSocketStream if the socket is in non-blocking mode. TWinSocketStream's constructor will raise an exception if the socket is not in blocking mode. This is stated in the documentation:
Use TWinSocketStream to read or write information over a blocking socket connection...
...
Note: TWinSocketStream does not work with non-blocking sockets.
TClientSocket in non-blocking mode works fine in a worker thread (though blocking mode is preferred), provided that the thread has a message loop. The reason is because in non-blocking mode, TClientSocket creates an internal window and associates it with the socket. This window receives messages from WinSock to trigger TClientSocket's events. As such, TClientSocket in non-blocking mode must be created, used, and destroyed within the same thread context. Do not access it across thread boundaries.
TClientSocket in blocking mode does not have that restriction.

Related

How to sync Delphi event while running DB operations in a background thread?

Using Delphi 7 & UIB, I'm running database operations in a background thread to eliminate problems like:
Timeout
Priority
Immediate Force-reconnect after network-loss
Non-blocked UI
Keeping an opened DB connection alive
User canceling
I've read ALL related topics here, and realized: using while isMyThreadStillRuning and not UserCanceled do sleep(100); end; isn't the recommended way to do this, but rather using TEvent.WaitFor(3000)....
The solutions here are either about sending signals FROM or TO... the thread, or doing it with messages, but never both ways.
Reading the help file, I've also found TSimpleEvent, which seems to be easier to use.
So what is the recommended way to communicate between Main-UI + DB-Thread in both ways?
Should I simply create 2+2 TSimpleEvent?
to start a new transaction (thread should stop sleeping)
force-STOP execution
to signal back if it's moved to a new stage (transaction started / executed / commited=done)
to signal back if there is any error happened
or should there be only 1 TEvent?
Update 2:
First tests show:
2x TSimpleEvent is enough (1 for Thread + 1 for Gui)
Both created as public properties of the background thread
Force-terminating the thread does not work. (Too many errors impossible to handle..)
Better to set a variable like (Stop_yourself) and let it cancel and free itself, (while creating a new instance from the same class and try again.)
(still work in progress...)
You should move the query to a TThread. Unfortunately, anonymous threads are not available in D7 so you need to write your own TThread derived class. Inside, you need its own DB connection to prevent shared resources. From the caller method, you can wait for the thread to end. The results should be stored somewhere in the caller class. Ensure that the access to parameters of the query and for storing the result of the query is handled thread-safe by using a TMutex or TMonitor.

Do my (beginner) understanding of blocking and non blocking io is correct?

Right now I do a lot of research about concurrency and parallelism. Could you tell me if I understand correctly (on os level):
Blocking io:
When I explicitly wait for connection (ie. in Ruby:)
conn = socket.accept
So my thread is blocked until I get something to socket, right?
(And I understand that I am pooling socket in some loop in accept for data, right?)
Non blocking:
I have thread that is asking from time to time all registered fd (filedescriptors) if they have something I need. But there is also 'dont call us, we will call you' rule, but how it is working on ios level (on libraries like eventmachine or node it is done by callbacks (?))
PS. I would welcome readings and presentations, like:
http://www.paperplanes.de/2011/4/25/eventmachine-how-does-it-work.html
http://www.kegel.com/c10k.html
Blocking io:
When I explicitly wait for connection (ie. in Ruby:)
conn = socket.accept
So my thread is blocked until I get something to socket, right?
Right.
(And I understand that I am pooling socket in some loop in accept for data, right?)
Wrong. You are blocked. Period. The operating system will wake you up when something relevant happens.
Non blocking:
I have thread that is asking from time to time all registered fd (filedescriptors) if they have something I need. But there is also 'dont call us, we will call you' rule, but how it is working on ios level (on libraries like eventmachine or node it is done by callbacks (?))
What you have just described including the callbacks is 'asynchronous' I/O.
Non-blocking I/O just means that the calls don't block, so e.g. if you call read() and there is no data already there, nothing happens. When to call the calls is up to you but it is assisted by select()/poll()/epoll(), which block until various events have occurred on the socket(s).

Delphi: How to lock "Socket.Write" and unlock?

I have several clients, who writes to one socket (not port), when they write together, I receive the garbage, all data from all clients are merged.
all clients are in the same program in Threads.
I need to lock write()
ASocket.Connection.Socket.LOCK; // need to be thread safe
ASocket.Connection.Socket.Write(buf);
ASocket.Connection.Socket.UNLOCK; // need to be thread safe
How can I do it ?
Thanks.
Delphi 2010, Indy 10, Win7
You can use TCriticalSection (SyncObjs unit): put the Write between Enter and Leave:
CriticalSection.Enter;
try
ASocket.Connection.Socket.Write(buf);
finally
CriticalSection.Leave;
end;
The methods Acquire and Release do the same (doc). Important: if you write to the socket at multiple points of your code, you must use the same object (the one I called CriticalSection in the above example).

Delphi - Help calling threaded dll function from another thread

I'm using Delphi 2006 and have a bit of a problem with an application I'm developing.
I have a form that creates a thread which calls a function that performs a lengthy operation, lets call it LengthyProcess. Inside the LengthyProcess function we also call several Dll functions which also create threads of their own.
The problem that I am having is that if I don't use the Synchronize function of my thread to call LengthyProcess the thread stops responding (the main thread is still responding fine). I don't want to use Synchronize because that means the main thread is waiting for LengthyProcess to finish and therefore defeats the purpose of creating a separate thread.
I have tracked the problem down to a function inside the dll that creates a thread and then calls WaitFor, this is all done using TThread by the way. WaitFor checks to see if the CurrentThreadID is equal to the MainThreadID and if it is then it will call CheckSychronization, and all is fine. So if we use Synchronize then the CurrentThreadID will equal the MainThreadID however if we do not use Synchronize then of course CurrentThreadID <> MainThreadID, and when this happens WaitFor tells the current thread (the thread I created) to wait for the thread created by the DLL and so CheckSynchronization never gets called and my thread ends up waiting forever for the thread created in the dll.
I hope this makes sense, sorry I don't know any better way to explain it. Has anyone else had this issue and knows how to solve it please?
If your secondary thread "stops responding," then I assume it has a message pump. (Otherwise, you need to explain what it stops responding to.) You appear to also wish for the thread to be able to detect when the tertiary thread finishes running. (The "primary" thread here is the VCL thread, which isn't involved at all.)
You tried using WaitFor, but were disappointed when you discovered that it blocks. That's what it has always been designed to do, though. Its behavior in the main thread is where it gets weird, so it's safe to call from the VCL thread even though it was never really meant to be used that way originally.
To process messages and wait for threads to finish running, you need to use one or more of the wait functions from the Windows API. Start with MsgWaitForMultipleObjects. It can wait for various types of kernel handles, including thread handles, but also notify you when messages are available. The idea is that you'll call that function in a loop. When it says messages are available, handle them, and then loop again to continue waiting.
The following is just an outline. You'll want to check the documentation for all the API functions used, and combine that with the rest of the knowledge you have about your own threads.
procedure TSecondaryThread.Execute;
var
ret: DWord;
ThreadHandle: THandle;
Msg: TMsg;
begin
ThreadHandle := TertiaryThread.Handle;
repeat
ret := MsgWaitForMultipleObjects(1, ThreadHandle, False, Infinite, qs_AllEvents);
case ret of
Wait_Object_0: begin
// The thread terminated. Do something about it.
CloseHandle(ThreadHandle);
PostQuitMessage(0);
// Put *something* in the parameter so further calls to MWFMO
// will have a valid handle. May as well use a handle to something
// that will never become signaled so all we'll get are more
// messages. I'm pretty sure you can't pass an empty array of
// handles; there must be at least one, and it must be valid.
ThreadHandle := Self.Handle;
end;
Wait_Object_0 + 1: begin
// At least one message is available. Handle *all* of
// them before calling MsgWaitForMultipleObjects again
while PeekMessage(Msg, 0, 0, 0, pm_Remove) do
case Msg.Message of
wm_Quit: begin
// Do something about terminating the tertiary thread.
// Then stop the message loop and the waiting loop.
Exit;
end;
else begin
TranslateMessage(Msg);
DispatchMessage(Msg);
end;
end;
end;
Wait_Timeout: Assert(False, 'Infinity has passed');
Wait_Failed: RaiseLastOSError;
else Assert(False, 'Unexpected return value');
end;
until False;
end;
The part about handling all the messages is important. As soon as you call GetMessage, PeekMessage, or WaitMessage, the OS marks all messages in the queue as "old," but MsgWaitForMultipleObjects will only return when there is a "new" message on the queue — one that arrived after the last call to PeekMessage.
HI, Thanks for your reply, yes i realize that my question isn't very clear and somewhat confusing; so i'll try to clarify things a bit, here goes..
All of the threads described below are derived from TThread.
I have a form which starts a thread but does not wait for it. The thread started by the form calls a function that performs a long task.
The function calls another function in a DLL, the function in the DLL starts a thread and waits for it. The thread started by the DLL function calls another function via synchronize.
Form->Starts a thread but does not wait->The thread calls a functions->The function calls a DLL function->The Dll function starts a thread and waits->The thread started by the DLL function calls another function via synchronize i.e Synchronize(UpdateRecords).
The problem is that the call to synchronize never returns because, from what i can see, it has entered some sort of dead lock.
How synchronize works: Synchronize puts the method call into a queue and sets an event, Synchronize then waits for the event to become signaled. When the main thread is idle it will process the method calls that are waiting in the queue, after it has processed a method call it will signal the associated event so that the thread that initiated the synchronization can continue on.
The thread that was started by the form does not use synchronize to call the function that performs the long task, if it does use synchronize then the application does not dead lock, but this defeats the purpose of use a thread for the long process.
I've tracked down the problem, it seems to be that the TApplication object created by the dll is not processing messages and has a handle of 0, how this happened I don't know (I didn't write the DLL, it was written by someone else), but it is a cause of the problem because it will never process the method called queued by synchronize.
I mentioned earlier that if i call the function that performs the long process from my thread using synchronize then the application does not dead lock. This is because the main thread will be responsible for calling the function that performs the long process. So the long process function calls a DLL function which starts another thread and then calls WaitFor. WaitFor checks to see if the current thread is the main thread, and if it is, it processes method calls which have been queued by synchronize, continuously in a loop until the thread the thread that it is waiting for is released (i.e. the method it queued via synchronize gets called and the wait event is signaled).
In WaitFor, if the current thread is not the main thread then WaitFor simply blocks until the thread it is waiting for is released.
Anyway i can't do anything about the application object in the dll because that dll is quite complex and used by a larger system. I guess i can expose a method in the dll which can process the methods in the synchronization queue, i can then call this method from my application while its idle.
Anyway again thanks for your help but i've solved this problem now.
Using the TThread class or even the Application object in a Delphi DLL is extremely unsafe. The RTL and VCL core classes, globals and singleton objects are designed to exist once per process and can't handle the namespace duplication and incomplete initialization in a stadard DLL library.
You may get around it by building with runtime packages (RTL & VCL are enough; you may also build your own with just the system units you reallt need), in the EXE and all DLLs referencing the runtime units (Forms and Classes, especially) - they get single shared namespace and the full EXE initialization sequence this way.
If you can't modify the DLL at all, you may try to set it's Application.Handle, MainThreadID, SyncEvent and WakeMainThread to the corresponding values in the main EXE module - this may work, but it's just as ugly as it looks like and it doesn't cover all edge-cases (the classes and important globals will still be duplicated).

Does an asynchronous call always create/call a new thread?

Does asynchronous call always create a new thread?
Example:
If JavaScript is single threaded then how can it do an async postback? Is it actually blocking until it gets a callback? If so, is this really an async call?
This is an interesting question.
Asynchronous programming is a paradigm of programming that is principally single threaded, i.e. "following one thread of continuous execution".
You refer to javascript, so lets discuss that language, in the environment of a web browser. A web browser runs a single thread of javascript execution in each window, it handles events (such as onclick="someFunction()") and network connections (such as xmlhttprequest calls).
<script>
function performRequest() {
xmlhttp.open("GET", "someurl", true);
xmlhttp.onreadystatechange = function() {
if (xmlhttp.readyState == 4) {
alert(xmlhttp.responseText);
}
}
xmlhttp.send(sometext);
}
</script>
<span onclick="performRequest()">perform request</span>
(This is a nonworking example, for demonstration of concepts only).
In order to do everything in an asynchronous manner, the controlling thread has what is known as a 'main loop'. A main loop looks kind of like this:
while (true) {
event = nextEvent(all_event_sources);
handler = findEventHandler(event);
handler(event);
}
It is important to note that this is not a 'busy loop'. This is kind of like a sleeping thread, waiting for activity to occur. Activity could be input from the user (Mouse Movement, a Button Click, Typing), or it could be network activity (The response from the server).
So in the example above,
When the user clicks on the span, a ButtonClicked event would be generated, findEventHandler() would find the onclick event on the span tag, and then that handler would be called with the event.
When the xmlhttp request is created, it is added to the all_event_sources list of event sources.
After the performRequest() function returns, the mainloop is waiting at the nextEvent() step waiting for a response. At this point there is nothing 'blocking' further events from being handled.
The data comes back from the remote server, nextEvent() returns the network event, the event handler is found to be the onreadystatechange() method, that method is called, and an alert() dialog fires up.
It is worth noting that alert() is a blocking dialog. While that dialog is up, no further events can be processed. It's an eccentricity of the javascript model of web pages that we have a readily available method that will block further execution within the context of that page.
The Javascript model is single-threaded. An asynchronous call is not a new thread, but rather interrupts an existing thread. It's analogous to interrupts in a kernel.
Yes it makes sense to have asynchronous calls with a single thread. Here's how to think about it: When you call a function within a single thread, the state for the current method is pushed onto a stack (i.e. local variables). The subroutine is invoked and eventually returns, at which time the original state is popped off the stack.
With an asynchronous callback, the same thing happens! The difference is that the subroutine is invoked by the system, not by the current code invoking a subroutine.
A couple notes about JavaScript in particular:
XMLHttpRequests are non-blocking by default. The send() method returns immediately after the request has been relayed to the underlying network stack. A response from the server will schedule an invocation of your callback on the event loop as discussed by the other excellent answers.
This does not require a new thread. The underlying socket API is selectable, similar to java.nio.channels in Java.
It's possible to construct synchronous XMLHttpRequest objects by passing false as the third parameter to open(). This will cause the send() method to block until a response has been received from the server, thus placing the event loop at the mercy of network latency and potentially hanging the browser until network timeout. This is a Bad Thing™.
Firefox 3.5 will introduce honest-to-god multithreaded JavaScript with the Worker class. The background code runs in a completely separate environment and communicates with the browser window by scheduling callbacks on the event loop.
In many GUI applications, an async call (like Java's invokeLater) merely adds the Runnable object to its GUI thread queue. The GUI thread is already created, and it doesn't create a new thread. But threads aren't even strictly required for an asynchronous system. Take, for example, libevent, which uses select/poll/kqueue, etc. to make non-blocking calls to sockets, which then fires callbacks to your code, completely without threads.
No, but more than one thread will be involved.
An asynchronous call might launch another thread to do the work, or it might post a message into a queue on another, already running thread. The caller continues and the callee calls back once it processes the message.
If you wanted to do a synchronous call in this context, you'd need to post a message and actively wait for the callback to happen.
So in summary: More than one thread will be involved, but it doesn't necessarily create a new thread.
I don't know about javascript, but for instance in the Windows Forms world, asynchronous invocations can be made without multiple threads. This has to do with the way the Windows Message Pump operates. Basically a Windows Forms application sets up a message queue through which Windows places messages notifying it about events. For instance, if you move the mouse, messages will be placed on that queue. The Windows Forms application will be in an endless loop consuming all the messages that are thrown at it. According to what each message contains it will move windows around, repaint them or even invoke user-defined methods, amongst other things. Calls to methods are identified by delegates. When the application finds a delegate instance in the queue, it happily invokes the method referred by the delegate.
So, if you are in a method doing something and want to spawn some asynchronous work without creating a new thread, all you have to do is place a delegate instance into the queue, using the Control.BeginInvoke method. Now, this isn't actually multithreaded, but if you throw very small pieces of work to the queue, it will look like multithreaded. If, on the other hand you give it a time consuming method to execute, the application will freeze until the method is done, which will look like a jammed application, even though it is doing something.

Resources