Rasterize 3D line - graphics

I am trying to find an algorithm for 3D line segment rasterization. Bresenham's algorithm seems like it's almost what I want but it doesn't compute any Z values.
Does anyone know if there is a way to extend Bresenham's algorithm or maybe a different algorithm?

Related

Simple 2D Perlin Noise in Python

There is lots of different implementations of 2D perlin noise in Python.
My question is there a simple implementation of perlin noise in Python that fits in 1 function or 1 class? Or maybe there is easier-to-implement 2D noise that is similar to perlin noise?
Does it need to be integers, or is double floating point precision good enough? Can you use Cython? There is a Cython wrapper for FastNoiseLite here: https://github.com/tizilogic/PyFastNoiseLite . You can convert the integers to doubles, with plenty of precision left over.
I would also suggest using the OpenSimplex2 or OpenSimplex2S noise option, rather than Perlin. Perlin as a base noise is very grid-aligned looking. Simplex/OpenSimplex2(S) directly address that.
The simplest implementation of Perlin noise I have found has been this.
https://pypi.org/project/perlin-noise/
Once installed, and initialised at the top of your code, simply calling the function noise(float) returns the value at that point of the noise field. Additionally, with "unlimited coordinate space", you can simply add more values to the noise function noise(float,float) to change to a 2D, 3D, or higher dimensional noise field.
They provide a couple of basic examples on the website which I found very helpful and sufficient to then be able to implement the library.

DDA Algorithm and Bresenham Algorithm

I have been studying DDA and Bresenham algorithms for line drawing and am curious about one thing.In both the algorithms,we consider a pixel grid to be of unit size and perform further steps.My question is if I change my grid size to say 0.5*0.5 instead of 1*1 grid,will there be any changes reflected in the way both algorithms work.If yes,can somebody enlighten me as to what those changes will be in each algorithm respectively.Very curious to know.Thanks for your answers in advance.Anybody who can help,please do so,since it urgent.I have an exam and I want this concept clarified.Please.Thanks:)

fast 2D texture line sample

Imagine you have a chessboard textured triangle shown in front of you.
Then imagine you move the camera so that you can see the triangle from one side, when it nearly looks as a line.
You will provably see the line as grey, because this is the average color of the texels shown in a straight line from the camera to the end of the triangle. The GPU does this all the time.
Now, how is this implemented? Should I sample every texel in a straight line and average the result to get the same output? Or is there another more efficient way to do this? Maybe using mipmaps?
It does not matter if you look at the object from the side, front, or back; the implementation remains exactly the same.
The exact implementation depends on the required results. A typical graphics API such as Direct3D has many different texture sample techniques, which all have different properties. Have a look at the documentation for some common sampling techniques and an explanation.
If you start looking at objects from an oblique angle, the texture on the triangle might look distorted with most sampling techniques, and Anisotropic Filtering is often used in these scenario's.

How to get the outline of a stroke? [duplicate]

This question already has answers here:
svg: generate 'outline path'
(2 answers)
Closed 5 years ago.
I want to convert a stroked path to a filled object. (Programmatically, in JavaScript.)
The line is just a simple curved line, a sequence of coordinates. I can render this line as a path, and give it a stroke of a certain thickness... but I'm trying to get a filled shape rather than a stroked line, so that I can do further modifications on it, such as warping it, so the resulting 'stroke' might vary in thickness or have custom bits cut out of it (neither of these things are possible with a real SVG stroke, as far as I can tell).
So I'm trying to manually 'thicken' a line into a solid shape. I can't find any function that does this – I've looked through the docs of D3.js and Raphaël, but no luck. Does anyone know of a library/function that would do this?
Or, even better: if someone could explain to me the geometry theory about how I would do this task manually, by taking the list of line coordinates I have and working out a new path that effectively 'strokes' it, that would be amazing. To put it another way, what does the browser do when you tell it to stroke a path – how does it work out what shape the stroke should be?
There has been a similar question recently:
svg: generate 'outline path'
All in all, this is a non-trivial task. As mentioned in my answer to the linked question, PostScript has a command for generating paths that produce basically the same output as a stroke, called strokepath. If you look at what Ghostscript spits out when you run the code I posted at the linked question, it's pretty ugly. And even Inkscape doesn't really do a good job. I just tried Path => Outline stroke in Inkscape (I think that's what the English captions should say), and what came out didn't really look the same as the stroked path.
The "simplest" case would be if you only have non-self-intersecting polylines, polygons or paths that don't contain curves because in general, you can't draw exact "parallel" Bézier curves to the right and the left of a non-trivial Bézier curve that would delimit the stroked area - it's mathematically non-existent. So you would have to approximate it one way or the other. For straight line segments, the exact solution can be found comparatively easily.
The classic way of rendering vector paths with curves/arcs in them is to approximate everything with a polyline that is sufficiently smooth. De Casteljau's Algorithm is typically used for turning Bézier curves into line segments. (That's also basically what comes out when you use the strokepath command in Ghostscript.) You can then find delimiting parallel line segments, but have to join them correctly, using the appropriate linejoin and miterlimit rules. Of course, don't forget the linecaps.
I thought that self-intersecting paths might be tricky because you might get hollow areas inside the path, i.e. the "crossing area" of a black path might become white. This might not be an issue for open paths when using nonzero winding rule, but I'd be cautious about this. For closed paths, you probably need the two "delimiting" paths to run in opposite orientation. But I'm not sure right now whether this really covers all the potential pitfalls.
Sorry if I cause a lot of confusion with this and maybe am not of much help.
This page has a fairly good tutorial on bezier curves in general with a nice section on offset curves.
http://pomax.github.io/bezierinfo/
A less precise but possibly faster method can be found here.
http://seant23.wordpress.com/2010/11/12/offset-bezier-curves/
There is no mathematical answer, because the curve parallel to a bezier curve is not generally a bezier curve. Most methods have degenerate cases, especially when dealing with a series of curves.
Think of a simple curve as one with no trouble spots. No cusps, no loops, no inflections, and ideally a strictly increasing curvature. Chop up all the starting curves into these simple curves. Find all the offset curves of these simple curves. Put all the offset curves back together dealing with gaps and intersections. Quadratic curves are much more tractable if you have the option to work with them.
I think most browsers do something similar to processingjs, as they have degenerate cases even with quadratic curves. For example, look at the curve 200,300 719,301 500,300 with a thickness of 100 or more.
The standard method is the Tiller-Hanson algorithm (Offsets of Two-Dimensional Profiles, 1984, which irritatingly is not on line for free) which creates a good approximation. The idea is that because the control points of each Bezier curve lie on lines tangent to the start and end of the curve, a parallel curve will have the same property. So we offset the start and the end of the curve, then find new control points using these intersections. However, that gives very bad results for sharp curves, so the first step is to bisect the original curve, which is very easy to do to Bezier curves, until it turns through a sufficiently small angle.
Other refinements are needed to deal with (i) intersections between the parallels, on the inside of each vertex; (ii) inserting an arc of a circle to fill the gap on the outside of each vertex; and (iii) adding end-caps - square, butt or circular.
Tiller-Hanson is difficult to implement, but there's a good open-source implementation in the FreeType library, in ftstroke.c (http://git.savannah.gnu.org/cgit/freetype/freetype2.git/tree/src/base/ftstroke.c).
I'm sorry to say that it can be quite difficult to integrate this code, but I have used it successfully, and it works well.

Two Dimensional Curve Approximation

here is what I want to do (preferably with Matlab):
Basically I have several traces of cars driving on an intersection. Each one is noisy, so I want to take the mean over all measurements to get a better approximation of the real route. In other words, I am looking for a way to approximate the Curve, which has the smallest distence to all of the meassured traces (in a least-square sense).
At the first glance, this is quite similar what can be achieved with spap2 of the CurveFitting Toolbox (good example in section Least-Squares Approximation here).
But this algorithm has some major drawback: It assumes a function (with exactly one y(x) for every x), but what I want is a curve in 2d (which may have several y(x) for one x). This leads to problems when cars turn right or left with more then 90 degrees.
Futhermore it takes the vertical offsets and not the perpendicular offsets (according to the definition on wolfram).
Has anybody an idea how to solve this problem? I thought of using a B-Spline and change the number of knots and the degree until I reached a certain fitting quality, but I can't find a way to solve this problem analytically or with the functions provided by the CurveFitting Toolbox. Is there a way to solve this without numerical optimization?
mbeckish is right. In order to get sufficient flexibility in the curve shape, you must use a parametric curve representation (x(t), y(t)) instead of an explicit representation y(x). See Parametric equation.
Given n successive points on the curve, assign them their true time if you know it or just integers 0..n-1 if you don't. Then call spap2 twice with vectors T, X and T, Y instead of X, Y. Now for arbitrary t you get a point (x, y) on the curve.
This won't give you a true least squares solution, but should be good enough for your needs.

Resources