Where can I get stats on mouse clicks? - statistics

I'm interested in finding out whether people tend to click the mouse faster when it's cold or hot, if the time of day affects the speed of mouse clicks, and lots of other information like that.
Does anyone know where I can get this kind of information?

You can get at least some of this kind of information on Mac OS X, Linux, and Windows with WhatPulse:
https://whatpulse.org
As far as combining that with other data like time of day or cold or hotness, I would check out AppleEvents and possibly using a USB micro controller to measure the temperature and keep track of time of day... you could even make a USB-based micro controller that hooks up between the mouse and the keyboard and collects mouse clicks and passes them along, keeping track of those other data points along the way. If you have any questions about how to get/use/program a micro controller, shoot me a message!
Aha! I found something for you:
Link

Related

Recognize specific ringtone

What I want is to be able to get a signal at my raspberry pi at home when I'm not at home so I can e.g. wake up my PC. I always have an old phone lying around that I never really use. So I thought, I can call my phone, a specific mp3 ringtone plays, my raspberry pi listens and recognizes the ringtone and therefore the signal. So I can pretty much chose whatever ringtone I want (but hopefully a not too long one). But the problem is, that it should be recognizable by the raspberry and it should be distinguishable from other sounds. At best I can play random music at home and it will not get signalled until it's the specific ringtone i chose.
So I'm at the very beginning of the project and I have a lot of question. Is this even feasible? How do I listen to the ringtone? Should I use a normal microphone or could I e.g. trigger some gpio pin as long as a specific frequency is played? What kind of ringtone should I use to be as distinguishable as possible? And how to create the software to recognize the sound?
I know this is a lot and I don't expect a step by step solution. But maybe you got some hints to get me in the right direction?
If someone has a similar problem, I found a solution: First I had to choose between a mostly hardware solution and a mostly software solution. The hardware solution is to filter specific frequencies. This seems to be pretty hard using normal band-pass filters if you want narrow bands. There are also components that can do that, now I know of the NE567. But this component only reacts to one frequency and takes quite a lot of energy. To recognize a ringtone, more of these components are needes which means more power consumption. Additionally this solution is pretty unflexible.
So I went for the software solution. Now I have an Arduino Uno that gets an amplified electret microphone signal at an analog input pin. The data is collected and simultaneously analysed with an FFT algorithm. Then I check the dominant frequency if there is any and safe it in an array. Everytime a got a new data point I compare the array with the pattern of my ringtone and calculate a score for the match. If the score is big enough the ringtone is "found" and I can trigger my event.
I'm actually pretty pleased with the solution because it works quite well even with the phone some feet away from the microphone. I thought I need to put the microphone almost directly next to the phone to get good results, but I dont have to. It's still a little sensitive, because the sound volume shouldnt be too high or to low. But with the right volume settings it works with a quite big area when the phone is in the same room. It works even better with some space between microphone and phone, because the phones radiation from the call seems to disturb the circuit quite a lot. There is also the problem, that other noises block the ringtone recognition. I could compensate that with my algorithm, but I almost used up all resources of the Arduino, so I had to keep the algorithm simple. But in my case I dont have a noisy environment, so this is not a problem for me. Another pro is that my event was never triggered from another sound and it seems almost impossible that this could happen by accident.
So it is feasible and I think its actually a quite elegant solution. I also thought about a vibration detection or even directly using the vibration motor's signal but I have no control over the vibration function of that old phone. But I can chose the ringtone for every contact, so I only gave the "magic" ringtone to myself and so the event can only be triggered by myself. I only have to say, that writing the software was kind of hard with the Arduinos limitations. Because I need the data in real time I have limited time for the calculation. I had to limit the incomping data and therefore I can only listen to frequencies up to 10kHz. But the ringtone recognition is still possible and I think it was worth the effort. :)

What will be the best possible way to simulate the touch on the display screen?(without robot)

Recently I have been assigned to develope a system that simulates a series of mechanical touch on the display screen, I have suggested ARM robot as well as Cartesian coordinate robot, but both were rejected due to safety issues, My superiors are expecting a fast, reliable non-robotic mechanical setup that can triger the touch screen(Mechanically).
'The display is a normal Capacitative touch dispaly'
Thanks a lot for your valuable time
Although this question really doesn't belong on this forum, here are two possible solutions.
Depending on the requirements of the project, you could assemble an array of solenoids to be placed over the screen. Each solenoid would have a mechanical "rubber finger" attached to its plunger. The rubber fingers would need to be made of a conductive rubber material that is electrically connected to ground. Activating a solenoid would extend the plunger to touch the screen.
Eliminate the solenoids, and just have an array of conductive rubber fingers, which are all touching the screen simultaneously. Each rubber finger is connected to an open-drain driver circuit that, when activated, connects the finger to ground, thus creating a "touch." When de-activated, the rubber finger needs to electrically "float".

How can I synchronize two audio recordings *without* timestamps?

Let's say I have two separate recordings of the same concert (created on a user's phone and then uploaded to our server). These recordings are then aligned according to their creation timestamp. However, when these recordings are played together or quickly toggled between, it is revealed that their creation timestamps must be off because there is a perceptible delay.
Since the time stamp is not a reliable way to align these recordings, what is an alternative? I would really prefer not to have to learn about audio signal processing to solve this problem, but recognize this may be the only way. So, I guess my question is:
Can I get away with doing some kind of clock synchronization? Is that even possible if the internal device clocks are clearly off by an unknown amount? If yes, a general outline of how this would work and key words would be appreciated.
If #1 is not an option, I guess I need to learn about audio signal processing? Again, a general outline of how to tackle the problem from that angle and some key words would be appreciated.
There are 2 separate issues you need to deal with. Issue 1 is the alignment of the start time of the recordings. I doubt you can expect that both user's pressed record at the exact same moment. Even if they did they may be located different distances from the speaker and it takes time for sound to travel. Aligning the start times by hand is pretty trivial. The human brain is good at comparing the similarities of sound. Programmatically it's a different story. You might try using something like cross correlation or looking over on dsp.stackexchange.com. There is no exact method though.
Issue 2 is that the clocks driving the A/D converters on the two devices are not going to be running at the same exact rate. So even if you synchronize the start time, eventually the two are going to drift apart. The time it takes to noticeably drift is a function of the difference of the two clock frequencies. If they are relatively close you may not notice in a short recording. To counter act this you need to stretch the time of one of the recordings. This increases or decreases the duration of the recording without affecting the pitch. There are plenty of audio recording apps that allow you to time stretch but they don't give you any help in figuring out by how much. Start be googling "time stretching" or again have a look at dsp.stackexchange.com.
I realize neither of these are direct answers - rather suggestions.
Take a look at this document, describes how you can align recordings using Sonic Visualizer(GPL) and a plugin.
I've not used it before, but found the document (and this question) when I was faced with a similar problem.

Gesture Recognition for my Grandma (Kinect) Linux

I'm looking into making a project with the Kinect to allow my Grandma to control her TV without being daunted by using the remote. So, I've been looking into basic gesture recognition. The aim will be to say turn the volume of the TV up by sending the right IR code to the TV when the program detects that the right hand is being "waved."
The problem is, no matter where I look, I can't seem to find a Linux based tutorial which shows how to do something as a result of a gesture. One other thing to note is that I don't need to have any GUI apart from the debug window as this will slow my program down a fair bit.
Does anybody know of something somewhere which will allow me to in a loop, constantly check for some hand gesture and when it does, I can control something, without the need of any GUI at all, and on Linux? :/
I'm happy to go for any language but my experience revolves around Python and C.
Any help will be accepted with great appreciation.
Thanks in advance
Matt
In principle, this concept is great, but the amount of features a remote offers is going to be hard to replicate using a number of gestures that an older person can memorize. They will probably be even less incentivized to do this (learning new things sucks) if they already have a solution (remote), even though they really love you. I'm just warning you.
I recommend you use OpenNI and NITE. Note that the current version of OpenNI (2) does not have Kinect support. You need to use OpenNI 1.5.4 and look for the SensorKinect093 driver. There should be some gesture code that works for that (googling OpenNI Gesture yields a ton of results). If you're using something that expects OpenNI 2, be warned that you may have to write some glue code.
The basic control set would be Volume +/-, Channel +/-, Power on/off. But that will be frustrating if she wants to go from Channel 03 to 50.
I don't know how low-level you want to go, but a really, REALLY simple gesture recognize could look at horizontal and vertical swipes of the right hand exceeding a velocity threshold (averaged). Be warned: detected skeletons can get really wonky when people are sitting (that's actually a bit of what my PhD is on).

Touchscreen using sound input?

i don't really know if it is actually possible, but i believe that it can be made. How possible is it to make a program that recognizes different sound bouncing from the screen and turn it into a position that will obviously be later fed to the mouse.
I know that it sounds kind of dumb, but lately i've been noticing that a very dull, strong sound is made when touching the screen, and that sound varies when doing so at different positions. Probably the microphone "hears" differently because the screen acts as a drum with the casing. Anyways, what do you think, anyone has any experience programming with sound?
First of all most domestic touch screens work by detecting pressure based on a criss-cross mesh layer underneath the display layer.
However I have seen an example where a touch interface was interrogated onto a pane of glass, it used 4 microphones to determine the corners, when you tapped a certain part of the screen it measures the delay in the sound getting to each microphone, therefore allowing one to triangulate the touch.
This is the methodology you would use, you don't even need to set up the hardware to test it, you could throw up an interface in VB, when you click in a box it sends out a circular wave and just calculate using the times it takes to reach the 4 points where the pointer is.
EDIT
As nikie suggested, drag & drop, or any kind of gestures would be impossible using the microphone method, as the technique needs a wave of sound to detect the input.
http://computer.howstuffworks.com/question7161.htm
I don't know if this will get you far, but you can investigate the techniques used in MIDI drums for returning various nuances of play.

Resources