Does a thread die once I kill the program which started it?
Probably it has to do with my English, but I couldn't find it here:
https://docs.python.org/2/library/threading.html
Yes, when a process is killed (e.g. by sending it SiGKILL), all of its threads get terminated.
It's worth noting that this is not Python-specific.
It seems that this is the part of the documentation you're looking for, and it states:
When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX using the native thread implementation, they survive. On most other systems, they are killed without executing try ... finally clauses or executing object destructors.
So it's a thing Python doesn't define - it can vary depending on the particular OS.
Related
I've this problem, I need to understand if a Linux thread is running or not due to crash and not for normal exit. The reason to do that is try to restart the thread without reset\restart all system.
The pthread_join() seems not a good option because I've several thread to monitoring and the function return on specific thread, It doesn't work in "parallel". At moment I've a keeep live signal from thread to main but I'm looking for some system call or thread attribute to understand the state
Any suggestion?
P
Thread "crashes"
How to detect if a linux thread is crashed
if (0) //...
That is, the only way that a pthreads thread can terminate abnormally while other threads in the process continue to run is via thread cancellation,* which is not well described as a "crash". In particular, if a signal is received whose effect is abnormal termination then the whole process terminates, not just the thread that handled the signal. Other kinds of errors do not cause threads to terminate.
On the other hand, if by "crash" you mean normal termination in response to the thread detecting an error condition, then you have no limitation on what the thread can do prior to terminating to communicate about its state. For example,
it could update a shared object that tracks information about your threads
it could write to a pipe designated for the purpose
it could raise a signal
If you like, you can use pthread_cleanup_push() to register thread cleanup handlers to help with that.
On the third hand, if you're asking about detecting live threads that are failing to make progress -- because they are deadlocked, for example -- then your best bet is probably to implement some form of heartbeat monitor. That would involve each thread you want to monitor periodically updating a shared object that tracks the time of each thread's last update. If a thread goes too long between beats then you can guess that it may be stalled. This requires you to instrument all the threads you want to monitor.
Thread cancellation
You should not use thread cancellation. But if you did, and if you include termination because of cancellation in your definition of "crash", then you still have all the options above available to you, but you must engage them by registering one or more cleanup handlers.
GNU-specific options
The main issues with using pthread_join() to check thread state are
it doesn't work for daemon threads, and
pthread_join() blocks until the specified thread terminates.
For daemon threads, you need one of the approaches already discussed, but for ordinary threads on GNU/Linux, Glibc provides non-standard pthread_tryjoin_np(), which performs a non-blocking attempt to join a thread, and also pthread_timedjoin_np(), which performs a join attempt with a timeout. If you are willing to rely on Glibc-specific functions then one of these might serve your purpose.
Linux-specific options
The Linux kernel makes per-process thread status information available via the /proc filesystem. See How to check the state of Linux threads?, for example. Do be aware, however, that the details vary a bit from one kernel version to another. And if you're planning to do this a lot, then also be aware that even though /proc is a virtual filesystem (so no physical disk is involved), you still access it via slow-ish I/O interfaces.
Any of the other alternatives is probably better than reading files in /proc. I mention it only for completeness.
Overall
I'm looking for some system call or thread attribute to understand the state
The pthreads API does not provide a "have you terminated?" function or any other such state-inquiry function, unless you count pthread_join(). If you want that then you need to roll your own, which you can do by means of some of the facilities already discussed.
*Do not use thread cancellation.
It is well-known that the default way to create a new process under POSIX is to use fork() (under Linux this internally maps to clone(...))
What I want to know is the following: It is well-known that when one calls fork() "The child process is created with a single thread--the one that called fork()"
(cf. https://linux.die.net/man/2/fork). This can of course cause problems if for example some other thread currently holds a lock. To me not also forking all the threads that exist in the process intuitively feels like a "leaky abstraction".
So I would like to know: What is the reason why only the thread calling fork() will exist in the child process instead of all threads of the process? Is there a good technical reason for this?
I know that on Multithreaded fork there is a related question, but the answers given there don't answer mine.
Of these two possibilities:
only the thread calling fork() continues running in the child process
Downside: if another thread was holding on to an internal resource such as a lock, it will not be released.
after fork(), all threads are duplicated into the child process
Downside: threads that were interacting with external resources continue running in parallel. If a thread was appending data to a file: now it happens twice.
Both are bad, but the first one choice only deadlocks the new child process, while the second choice results in corruption outside of the process. This could be described as "bad".
POSIX did standardize pthread_atfork to try to allow automatic cleanup in the first case, but it cannot possibly work.
tl;dr Don't use both threads and forks. Use posix_spawn if you have to.
Hi all~ I have a problem boring me so much.
Sometimes when I exit my program, there are some thread still running, in Linux system, it will cause crash after I quit the main loop. Is there any method that can kill all threads when I quit main loop?
It would help a lot if you specified your programming language and threading library of choice.
The usual way to control this type of situation (that is for a parent thread to wait until children complete before terminating) is to call a function supplied by the library, usually named join or wait.
pthread supplies you with pthread_join, for example.
If you're spawning processes via fork, you should use wait or waitpid in the parent to halt until the child completes - try man waitpid or take a look at this.
This way you can inform your children that you are about to exit via the usual means, wait until they wrap up and terminate, then cleanly exit the main loop.
Does this help? This is the least brutal way of synchronizing termination, if you want to actively kill the children threads there are alternatives, of course (like pthread_kill for pthreads, for example).
If you are using java try using the jconsole (Java Monitoring & Management Console) shipped with jdk6u23 in my case. You can get the thread name that is not killed. You can use join for that thread to complete.
But there can be program issue like, in my case i had a timer thread hanging [Timer-0] java.util.Timer to make an a timer.cancel() which closed that timer.
Is it possible for a parent process to start and stop a child (forked) process in Unix?
I want to implement a task scheduler (see here) which is able to run multiple processes at the same time which I believe requires either separate processes or threads.
How can I stop the execution of a child process and resume it after a given amount of time?
(If this is only possible with threads, how are threads implemented?)
You could write a simple scheduler imitation using signals.
If you have the permissions, then stop signal (SIGSTOP) stops the execution of a process, and continue signal (SIGCONT) continues it.
With signals you would not have any fine grained control on the "scheduling",
but I guess OS grade scheduler is not the purpose of this execersice any way.
Check kill (2) and signal (7) manual pages.
There are also many guides to using Unix signals in the web.
You can use signals, but in the usual UNIX world it's probably easier to use semaphores. Once you set the semaphore to not let the other process proceed, the scheduler will swap it out in the normal course of things; when you clear the semaphore, it will become ready to run again.
You can do the exact same thing with threads of course; the only dramatic difference is you save a heavyweight context switch.
Just a side note: If you are using signal(), the behavior may be different on different unixes. If you are using Linux, check the "Portability" section of the signal manpage, and the sigaction manpage, which is preferred.
Now, this might be a very newbie question, but I don't really have experience with multithreaded programming and I haven't fully understood how threads work compared to processes.
When a process on my machine hangs, say it's waiting for some IO that never comes or something similar, I can kill and restart it because other processes aren't affected and can, for example, still operate my terminal. This is very obvious, of course.
I'm not sure whether it is the same with threads inside a process: If one hangs, are the others unaffected? In other words, can I run a "watchdog" thread which supervises the other threads and, for example kill and recreate hanging threads? For example, if I have a threadpool that I don't want to be drained by occasional hangups.
Threads are independent, but there's a difference between a process and a thread, and that is that in the case of processes, the operating system does more than just "kill" it. It also cleans up after it.
If you start killing threads that seems to be hung, most likely you'll leave resources locked and similar, something that the operating system would close for you if you did the same to a process.
So for instance, if you open a file for writing, and start producing data and write it to the file, and this thread now hangs, for whatever reason, killing the thread will leave the file still open, and most likely locked, up until you close the entire program.
So the real answer to your question is: No, you can not kill threads the hard way.
If you simply ask a thread to close, that's different because then the thread is still in control and can clean up and close resources before terminating, but calling an API function like "KillThread" or similar is bad.
If a thread hangs, the others will continue executing. However, if the hung thread has locked a semaphore, critical section or other kind of synchronization object, and another thread attempts to lock the same synchronization object, you now have a deadlock with two dead threads.
It is possible to monitor other threads from a thread. Depending on your platform, there are appliable API's: I refer you to those as you haven't stated what OS you are writing for.
You didn't mention about the platform, but as far as I'm concerned, NT kernel schedules threads, not processes and threats them independently in that manner. This might not be and is not true on other platforms (some platforms, like Windows 3.1, do not use preemptive multithreading and if one thread goes in infinite loop, everything is affected).
The simple answer is yes.
Typically though code in a thread will handle this likely hood itself. Most commonly many APIs that perform operations that may hang will have timeout features of their own.
Alternatively a thread will wait on not just an the operation that might hang but also a timer. If the timer signals first its assummed the operation has hung.
Since for a watch dog thread to be useful in this scenario would need some co-operation from code in the other threads having the threads themselves set timeouts makes more sense than a watchdog.
Threads get scheduled independent of each other. So you could indeed stop and restart hanging threads. Threads do not run in a separate address-space so a misbehaving thread can still overwrite memory or take locks needed by other threads in the same process.
There's a pretty good overview of some of the pitfalls of killing and suspending threads in the Java documentation explaining why the methods that do it are deprecated. Basically, if you expect to be able to kill a thread, you have to be very, very careful to make it work without some sort of corruption. If a thread is hung it's probably because of a bug...in which case killing it will probably result in corruption.
http://java.sun.com/j2se/1.4.2/docs/guide/misc/threadPrimitiveDeprecation.html
If you need to be able to kill things, use processes.