Render arbitrary Polygons in DirectX11 - graphics

is there a way to render arbitrary polygons with n > 3 corners in directx 11?
i remember this being possible in older OpenGL versions with GL_POLYGON but i haven found anything in the directX API for this.

The answer is not natively, there is no NGons primitive types, and the GL ones were mostly full of issues and quite near of a FAN.
You will have to triangulate yourself, it can be done with a geometry shader, receiving the control points and outputing the triangles
A compute shader with a DrawIndirect is possible and more versatile but need more setup to work.

Related

How to draw rotated polygons in SDL2

I'm using SDL2 to draw a couple of polygons on a window for a simulation I'm doing. I'm using SDL2_gfx primitives for drawing polygons, but now I want the polygons to be rotated. What is the easiest way to achieve this? Performance is not terribly important at the moment. I'd just rather not to dirty my hands with trigonometry!
SDL2_gfx includes this functionality as standard. It is found in 'SDL_rotozoom.h' and documentation of the use of functions from it can be found at the link below:
http://www.ferzkopp.net/Software/SDL_gfx-2.0/Docs/html/_s_d_l__rotozoom_8h.html

real-time water effects without shaders

Im looking for a way to render decent-looking water on non-PC based hardware.
The platform has following limitations:
absence of hw shaders
absence of hw z-buffer
Available primitives are:
gouraud shaded triangles (with alpha)
textured triangles (with alpha)
Effects that are wanted:
transparency
caustics
small waves/ripples
refraction
Ideas I came up with:
animated/semi-transparent texture
bump-map/normal map
reflections by projecting world on X-Z plane
Before I actually go off prototyping some of these points, I wanted to see if anyone else has had similar experience, better suggestions, links to code samples, etc.
There are a variety of tricks that used to be used on old fixed function 3D hardware on the PC. Does your hardware support fixed function environment mapping? Multi-texturing and programmable blend stages? With just single texturing and no support for more complicated fixed function effects your options are limited but pre-shader hardware with slightly more sophisticated fixed function pipelines gives you quite a few possibilities. Fixed function environment mapping can be used to get some nice basic water effects for example.
NVIDIA's developer site used to be a good resource for all kinds of effects on old fixed function hardware but many of those articles don't seem to be available any more. You might be able to track some of them down by looking at old versions of the site from the Internet Archive. Other places to look for ideas are old GDC presentations and old articles on Gamasutra.com as well as some of the older Game Programming Gems books.

How to generate sprite art assets for different resolution screens?

I'm working on a game using OpenGL displaying sprites, i.e. 2d quad-mapped graphics with no projection, that will be displayed on several different resolution screens. (i.e. iPhone retina/non-retina, iPad.. my next project the problem will expand to desktop resolutions which are far more numerous)
I'm OK with handling different aspect ratios, that can be handled by opengl and my placement of the sprites. I'm also OK with slightly different resolutions - use same art and either border the screen, or display a little bit more info.. but when things start to grow/shrink by like 50%+ it's a major issue.
What is standard procedure for generating the art assets in this situation? Generate for the largest resolution and just let OpenGL worry about resizing during it's rasterizing, or do people generate art sets for each main resolution?
Rasterized sprite art tends to get ugly when it's stretched (interpolated), so I'm concerned.. but generating different sizes really means for practical purposes I have to go with vector drawings and export several resolutions. Limits the artist and is somewhat complicated as far as loading and managing the assets
(Yes, I can "just try it" to an extent, but I already have an idea of the results. I'm looking for solutions people use and angles I maybe wouldn't have thought of. This question does have an answer(s) it's not subjective or lazy)
You are correct that scaling bitmaps tends to make sprites bad. There are a couple of ways of dealing with that:
Draw them (pixelart) at all required resolutions. That is a lot of work but gives you full control.
Draw them (vectors) and render them at all required resolutions. Less work but scaling up or down beyond 50% or 200% might give bad results.
Draw them (3D appliction) and render them at all required resolutions. Quite some work but a very consistent set of sprites.
For each of these options you are free to post-process the bitmaps to clean them up or add details but if you do this for options 2 and 3, you are breaking the chain and will have to apply the changes again when rendering the same set again.
An other option is to limit the variation of resolutions.
As far as I know it is very common in the (game) industry to make all (or the most used/visible) sprites as pixel perfect as possible. This is what they pay the artists for...

Fast pixel drawing library

My application produces an "animation" in a per-pixel manner, so i need to efficiently draw them. I've tried different strategies/libraries with unsatisfactory results especially at higher resolutions.
Here's what I've tried:
SDL: ok, but slow;
OpenGL: inefficient pixel operations;
xlib: better, but still too slow;
svgalib, directfb, (other frame buffer implementations): they seem perfect but definitely too tricky to setup for the end user.
(NOTE: I'm maybe wrong about these assertions, if it's so please correct me)
What I need is the following:
fast pixel drawing with performances comparable to OpenGL rendering;
it should work on Linux (cross-platform as a bonus feature);
it should support double buffering and vertical synchronization;
it should be portable for what concerns the hardware;
it should be open source.
Can you please give me some enlightenment/ideas/suggestions?
Are your pixels sparse or dense (e.g. a bitmap)? If you are creating dense bitmaps out of pixels, then another option is to convert the bitmap into an OpenGL texture and use OpenGL APIs to render at some framerate.
The basic problem is that graphics hardware will be very different on different hardware platforms. Either you pick an abstraction layer, which slows things down, or code more closely to the type of graphics hardware present, which isn't portable.
I'm not totally sure what you're doing wrong, but it could be that you are writing pixels one at a time to the display surface.
Don't do that.
Instead, create a rendering surface in main memory in the same format as the display surface to render to, and then copy the whole, rendered image to the display in a single operation. Modern GPU's are very slow per transaction, but can move lots of data very quickly in a single operation.
Looks like you are confusing window manager (SDL and xlib) with rendering library (opengl).
Just pick a window manager (SDL, glut, or xlib if you like a challenge), activate double buffer mode, and make sure that you got direct rendering.
What kind of graphical card do you have? Most likely it will process pixels on the GPU. Look up how to create pixel shaders in opengl. Pixel shaders are processing per pixel.

Polygon Triangulation with Holes

I am looking for an algorithm or library (better) to break down a polygon into triangles. I will be using these triangles in a Direct3D application. What are the best available options?
Here is what I have found so far:
Ben Discoe's notes
FIST: Fast Industrial-Strength Triangulation of Polygons
I know that CGAL provides triangulation but am not sure if it supports holes.
I would really appreciate some opinions from people with prior experience in this area.
Edit: This is a 2D polygon.
To give you some more choices of libraries out there:
Polyboolean. I never tried this one, but it looks promising: http://www.complex-a5.ru/polyboolean/index.html
General Polygon Clipper. This one works very well in practice and does triangulation as well as clipping and holes holes: http://www.cs.man.ac.uk/~toby/alan/software/
My personal recommendation: Use the tesselation from the GLU (OpenGL Utility Library). The code is rock solid, faster than GPC and generates less triangles. You don't need an initialized OpenGL-Handle or anything like this to use the lib.
If you don't like the idea to include OpenGL system libs in a DirectX application there is a solution as well: Just download the SGI OpenGL reference implementation code and lift the triangulator from it. It just uses the OpenGL-Typedef names and a hand full of enums. That's it. You can extract the code and make a stand alone lib in an hour or two.
In general my advice would be to use something that alreay works and don't start to write your own triangulation.
It is tempting to roll your own if you have read about the ear-clipping or sweep-line algorithm, but fact is that computational geometry algorithms are incredible hard to write in a way that they work stable, never crash and always return a meaningful result. Numerical roundoff errors will accumulate and kill you in the end.
I wrote a triangulation algorithm in C for the company I work with. Getting the core algorithm working took two days. Getting it working with all kinds of degenerated inputs took another two years (I wasn't working fulltime on it, but trust me - I spent more time on it than I should have).
Jonathan Shewchuk's Triangle library is phenomenal; I've used it for automating triangulation in the past. You can ask it to attempt to avoid small/narrow triangles, etc., so you come up with "good" triangulations instead of just any triangulation.
CGAL has the tool you need:
Constrained Triangulations
You can simply provide boundaries of your polygon (incuding the boundaries of the holes) as constraints (the best would be that you insert all vertices, and then specify the constraints as pairs of Vertex_handles).
You can then tag the triangles of the triangulation by any traversal algorithm: start with a triangle incident to the infinite vertex and tag it as being outside, and each time you cross a constraint, switch to the opposite tag (inside if you were previously tagging the triangles as outsider, outside if you were tagging triangles as insider before).
I have found the poly2tri library to be exactly what I needed for triangulation. It produces a much cleaner mesh than other libraries I've tried (including libtess), and it does support holes as well. It's been converted to a bunch of languages. The license is New BSD, so you can use it in any project.
Poly2tri library on Google Code
try libtess2
https://code.google.com/p/libtess2/downloads/list
based on the original SGI GLU tesselator (with liberal licensing). Solves some memory management issues around lots of small mallocs.
You can add the holes relatively easily yourself. Basically triangulate to the convex hull of the input points, as per CGAL, and then delete any triangle whose incentre lies inside any of the hole polygons (or outside any of the external boundaries). When dealing with lots of holes in a large dataset, masking techniques may be used to significantly speed this process up.
edit: A common extension to this technique is to weed weak triangles on the hull, where the longest edge or smallest internal angle exceeds a given value. This will form a better concave hull.
I have implemented a 3D polygon triangulator in C# using the ear clipping method. It is easy to use, supports holes, is numerically robust, and supports aribtrary (not self-intersecting) convex/non-convex polygons.
This is a common problem in finite element analysis. It's called "automatic mesh generation". Google found this site with links to commercial and open source software. They usually presume some kind of CAD representation of the geometry to start.
Another option (with a very flexible license) is to port the algorithm from VTK:
vtkDelaunay2D
This algorithm works fairly well. Using it directly is possible, but requires links to VTK, which may have more overhead than you want (although it has many other nice features, as well).
It supports constraints (holes/boundaries/etc), as well as triangulating a surface that isn't necessarily in the XY plane. It also supports some features I haven't seen elsewhere (see the notes on Alpha values).

Resources