Collecting statistics in Teradata - statistics

In case of a nested query in teradata, if I have to collect statistics. Whats the ideal way to do it :
(1) Will I collect statistics on the entire nested query.
(2) Or will I collect statistics on only that part of a query on which I need statistics on?
I know its a kind off ambiguous question but I wanted to know the ideal way to approach this scenario.

TL;DR - Option 2
You can begin determining what the optimizer believes is necessary from a statistics perspective by using the following diagnostic command and then running an EXPLAIN for the query in question:
SET DIAGNOSTIC HELPSTATS ON FOR SESSION;
At the end of the EXPLAIN the optimizer will include, albeit aggressive at times, the missing statistics that the optimizer believes will improve the query plan confidence. For starters, I would focus on the statistics it indicates with High Confidence and re-run the EXPLAIN afterward to compare the changes in the query plan. (You saved the original EXPLAIN output, right?) It is an iterative process and with each additional set of statistics you collect you should compare the EXPLAIN output to determine if it improved the confidence of particular steps or provided the optimizer with a better alternative. The general rule of thumb is that statistics should never result in a less optimal plan.
Often the HELPSTATS diagnostic will include many additional statistics with lower confidence. Keep in mind that if your environment has a scheduled process to maintain statistics every additional set of stats you collect may increase the overhead of that process. You will wish to coordinate with the DBA of the environment any additional statistics you collect so they are aware. In some environments, statistics may be maintained as part of the physical data model so anything you collect may need to be documented.
Lastly, Teradata 14.10 takes everything you thought you knew about statistics maintenance and turns it upside down. Database Query Logging is being expanded to tie into this new statistics "process" (for lack of a better term) and when enabled the process can suggest statistics to collect based on query patterns on the system. It can also identify statistics that have been collected that are not being used and stop collecting them.

Related

How do I analyze a bunch of profiles

I have a bunch of profiles about my application(200+ profiles per week), I want to analyze them for getting some performance information.
I don't know what information can be analyzed from these files, maybe
the slowest function or the hot-spot code in the different release versions?
I have no relevant experience in this field, has anyone had that?
Well, it depends on the kind of profiles you have, you can capture number of different kinds of profiles.
In general most people are interested in the CPU profile and heap profile since they allow you to see which functions/lines use the most amount of CPU and allocate the most memory.
There are a number of ways you can visualize the data and/or drill into them. You should take a look at help output of go tool pprof and the pprof blog article to get you going.
As for the amount of profiles. In general, people analyze them just one by one. If you want an average over multiple samples, you can merge multiple samples with pprof-merge.
You can substract one profile from another to see relative changes. By using the -diff_base and -base flags.
Yet another approach can be to extract percentages per function for each profile and see if they change over time. You can do this by parsing the output of go tool pprof -top {profile}. You can correlate this data with known events like software updates or high demand and see if one functions starts taking up more resources than others(it might not scale very well).
If you are ever that the point where you want to develop custom tools for analysis, you can use the pprof library to parse the profiles for you.

How to deal with (Apache Beam) high IO bottlenecks?

Let's say to cite a simple example, that I have a very simple beam pipeline which just reads from a file and dumps the data into an output file. Now let's consider that the input file is huge (some GBs in size, the type of file you can't typically open in a text editor). Since the direct-runner implementation is quite simple (it reads the whole input set into memory), it won't be able to read and output those huge files (unless you assign an impractically high amount of memory to the java vm process); so my question is: "How do production runners like flink/spark/cloud dataflow" deal with this 'huge dataset problem'? - assuming they would not just try to put the whole file(s)/dataset into memory?" -.
I'd expect production runner's implementation need to work "in parts or batches" (like reading/processing/outputting in parts) to avoid trying to fit huge datasets into memory at any specific point in time. Can somebody please share their feedback regarding how production runners deal with this "huge data" situation?
Generalizing, please notice this applies for other input/output mechanisms too, for example if my input is a PCollection coming from huge database table (broadly speaking huge in both row-size and amount), does the internal implementation of the production's runner somehow divides the given input SQL statement into many internally generated sub statements each taking smaller subsets (for example by internally generating a count(-) statement, followed by N statements, each taking (count(-)/N) elements? the direct-runner won't do this and will just pass the given query 1:1 to the DB), or is my responsibility as a developer to "iterate in batches" and divide the problem, and if this is indeed the case, what are the best practices here, ie: having one pipeline for this or many?, and if only one then somehow parametrise the pipeline to read/write in batches? or iterate over a simple pipeline and manage necessary metadata externally to the pipeline?
thanks in advance, any feedback would be greatly appreciated!
EDIT (reflecting David's feedback):
David your feedback is highly valuable and definitely touches the point i'm interested in. Having a work discovery phase for splitting a source and and read phase to concurrently read the split-partitions is definitely what I was interested in hearing, so thanks for pointing me in the right direction. I have a couple of small follow up questions if you don't mind:
1 - The article points out under the section "Generic enumerator-reader communication mechanism" the following:
"The SplitEnumerator and SourceReader are both user implemented class.
It is not rare that the implementation require some communication
between these two components. In order to facilitate such use cases [....]"
So my question here would be, is that "splitting + reading behaviour" triggered by some user (ie. developer) provided implementation (specifically SplitEnumerator and SourceReader), or can I benefit from that out of the box without any custom code?.
2 - Probably just delving deeper into the question above; if I have a batch/bounded workload (let's say I'm using apache flink), and I'm interested in processing a "huge file" like described in the original post, will the pipeline work "out of the box" (doing the behind the scenes "work preparation phase" splits and the parallel reads), or would that require some custom code implemented by the developer?
thank's in advance for all your valuable feedback!
Note that when the inputs are bounded and known in advance (i.e., a batch workload as opposed to streaming), this is more straightforward.
In Flink, which is designed with streaming in mind, this is done by separating "work discovery" from "reading". A single SplitEnumerator runs once and enumerates the chunks to be read (the splits/partitions), and assigns them to parallel readers. In the batch case a split is defined by a range of offsets, while in the streaming case, the end offset for each split is set to LONG_MAX.
This is described in more detail in FLIP-27: Refactor Source Interface.
Just to provide some closure to this question, the justification for this question was to know if apache beam - when coupled with a production runner-(like flink or spark or google cloud dataflow), offered out of the box mechanisms for -splitting work a.k.a reading/writing manipulating - huge files (or datasources in general). The comment provided by David Anderson above proved of great value in hintintg at how Apache flink deals with this workflows.
At this point I've implemented solutions using huge files (for testing possible IO bottlenecks) with a "beam on flink" based pipeline, and I can confirm, that flink will create an excecution plan which includes splitting sources, and dividing work in such a way that no memory problem arises. Now, there can be of course conditions under which stability/"IO performance" is compromised, but at least I can confirm that the workflows carried out behind the pipeline abstraction, uses the filesystem when carriying out tasks, avoiding fitting all data in memory and thus avoiding trivial memory errors. Conclusion: yes "beam on flink" (and likely spark and dataflow too) do offer proper work preparation, work splitting and filesystem usage so that available volatile memory is used in an efficient way.
Update about datasources: Regarding DBs as datasources, Flink won't (and can't - it is not trivial) optimize/split/distribute work related to DB datasources in the same way it optimizes reading from the filesystem. There are still approaches to read huge amount of data (records) from a DB though, but the implementation details need to be addressed by the developer instead of being responsibility of the framework. I've found this article (https://nl.devoteam.com/expert-view/querying-jdbc-database-in-parallel-with-google-dataflow-apache-beam/) very helpful in addressing the point of reading massive amounts of records from a DB in beam (the article uses a cloud dataflow runner, but I used Flink and it worked just fine), splitting queries and distributing the processing.

kiba-etl Pattern to split transformations into independent pipelines

Kiba is a very small library, and it is my understanding that most of its value is derived from enforcing a modular architecture of small independent transformations.
However, it seems to me that the model of a series of serial transformations does not fit most of the ETL problems we face. To explain the issue, let me give a contrived example:
A source yields hashes with the following structure
{ spend: 3, cost: 7, people: 8, hours: 2 ... }
Our prefered output is a list of hashes where some of the keys might be the same as those from the source, though the values might differ
{ spend: 8, cost: 10, amount: 2 }
Now, calculating the resulting spend requires a series of transformations: ConvertCurrency, MultiplyByPeople etc. etc. And so does calculating the cost: ConvertCurrencyDifferently, MultiplyByOriginalSpend.. Notice that the cost calculations depend on the original (non transformed) spend value.
The most natural pattern would be to calculate the spend and cost in two independent pipelines, and merge the final output. A map-reduce pattern if you will. We could even benefit from running the pipelines in parallel.
However in my case it is not really a question of performance (as the transformations are very fast). The issue is that since Kiba applies all transforms as a set of serial steps, the cost calculations will be affected by the spend calculations, and we will end up with the wrong result.
Does kiba have a way of solving this issue? The only thing I can think of is to make sure that the destination names are not the same as the source names, e.g. something like 'originSpend' and 'finalSpend'. It still bothers me however that my spend calculation pipeline will have to make sure to pass on the full set of keys for each step, rather than just passing the key relevant to it, and then merging in the Cost keys in the end. Or perhaps one can define two independent kiba jobs, and have a master job call the two and merge their result in the end? What is the most kiba-idiomatic solution to this?
Splitting an ETL pipeline into multiple parallel paths seem to be a key feature of most ETL tools, so I'm surprised that it doesn't seem to be something kiba supports?
I think I lack extra details to be able to properly answer your main question. I will get in touch via email for this round, and will maybe comment here later for public visibility.
Splitting an ETL pipeline into multiple parallel paths seem to be a key feature of most ETL tools, so I'm surprised that it doesn't seem to be something kiba supports?
The main focus of Kiba ETL today is: components reuse, lower maintenance cost, modularity and ability to have a strong data & process quality.
Parallelisation is supported to some extent though, via different patterns.
Using Kiba Pro parallel transform to run sister jobs
If your main input is something that you can manage to "partition" with a low volume of items (e.g. database id ranges, or a list of files), you can use Kiba Pro parallel transform like this:
source ... # something that generate list of work items
parallel_transform(max_threads: 10) do |group_items|
Kiba.run(...)
end
This works well if there is no output at all, or not much output, coming to the destinations of the sister jobs.
This works with threads but one can also "fork" here for extra performance.
Using process partitioning
In a similar fashion, one can structure their jobs in a way where each process will only process a subset of the input data.
This way one can start say 4 processes (via cron jobs, or monitored via a parent tool), and pass a SHARD_NUMBER=1,2,3,4, which is then used by the source for input-load partitioning.
But!
I'm pretty sure your problem, as you said, is more about workflow control & declarations & ability to express what you need to be done, rather than performance.
I'll reach out and we'll discuss that.

Testing for heteroskedasticity and autocorrelation in large unbalanced panel data

I want to test for heteroskedasticity and autocorrelation in a large unbalanced panel dataset.
I do so using the following code:
* Heteroskedasticity test
// iterated GLS with only heteroskedasticity produces
// maximum-likelihood parameter estimates
xtgls adjusted_volume ibn.rounded_time i.id i.TRD_EVENT_DT, igls panels(heteroskedastic)
estimates store hetero
* Autocorrelation
findit xtserial
net sj 3-2 st0039
net install st0039
xtserial adjusted_volume ibn.rounded_time i.id i.TRD_EVENT_DT
Though I use the calculation power of high process center, because of the iteration method, this procedure takes more than 15 hours.
What is the most efficient program to perform these tests using Stata?
This question is borderline off-topic and quite broad, but i suspect still of
considerable interest to new users. As such, here i will try to consolidate our
conversation in the comments as an answer.
I strongly advise in the future to refrain from using highly subjective
words such as 'best', which can mean different things to different people. Or
terms like 'efficient', which can have a different meaning in a different context.
It is also difficult to provide specific advice regarding the use of commands
when we know nothing about what you are trying to do.
In my view, the 'best' choice, is the choice that gets the job done as accurately
as possible given the available data. Speed is an important consideration nowadays, but accuracy is still the most fundamental one. As you continue to use Stata, you will see that it has a considerable number of commands, often with overlapping functionality. Depending on the use case, sometimes opting for one implementation over another can be 'better', in the sense that it may be more practical or faster in achieving the desired end result.
Case in point, your comment in your previous post where the noconstant option is unavailable in rreg. In that particular context you can get a reasonably good alternative using regress with the vce(robust) option. In fact, this alternative may often be adequate for several use cases.
In this particular example, xtgls will be considerably faster if the igls
option is not used. This will be especially true with larger and more 'difficult' datasets. In cases where MLE is necessary, the iterate option will allow you to specify a fixed number of iterations, which could speed things up but can be a recipe for disaster if you don't know what you are doing and is thus not recommended. This option is usually used for other purposes. However, is xtgls the only command you could use? Read here why this may in fact not necessarily be the case.
Regarding speed, Stata in general is slow, at least when the ado language is used. This is because it is an interpreted language. The only realistic option for speed gains here is through parallelisation if you have Stata MP. Even in this case, whether any gains are achieved it will depend on a number of factors,
including which command you use.
Finally, xtserial is a community-contributed command, something which you
fail to make clear in your question. It is customary and useful to provide this
information right from the start, so others know that you do not refer to an
official, built-in command.

How do you measure if an interface change improved or reduced usability?

For an ecommerce website how do you measure if a change to your site actually improved usability? What kind of measurements should you gather and how would you set up a framework for making this testing part of development?
Multivariate testing and reporting is a great way to actually measure these kind of things.
It allows you to test what combination of page elements has the greatest conversion rate, providing continual improvement on your site design and usability.
Google Web Optimiser has support for this.
Similar methods that you used to identify the usability problems to begin with-- usability testing. Typically you identify your use-cases and then have a lab study evaluating how users go about accomplishing certain goals. Lab testing is typically good with 8-10 people.
The more information methodology we have adopted to understand our users is to have anonymous data collection (you may need user permission, make your privacy policys clear, etc.) This is simply evaluating what buttons/navigation menus users click on, how users delete something (i.e. changing quantity - are more users entering 0 and updating quantity or hitting X)? This is a bit more complex to setup; you have to develop an infrastructure to hold this data (which is actually just counters, i.e. "Times clicked x: 138838383, Times entered 0: 390393") and allow data points to be created as needed to plug into the design.
To push the measurement of an improvement of a UI change up the stream from end-user (where the data gathering could take a while) to design or implementation, some simple heuristics can be used:
Is the number of actions it takes to perform a scenario less? (If yes, then it has improved). Measurement: # of steps reduced / added.
Does the change reduce the number of kinds of input devices to use (even if # of steps is the same)? By this, I mean if you take something that relied on both the mouse and keyboard and changed it to rely only on the mouse or only on the keyboard, then you have improved useability. Measurement: Change in # of devices used.
Does the change make different parts of the website consistent? E.g. If one part of the e-Commerce site loses changes made while you are not logged on and another part does not, this is inconsistent. Changing it so that they have the same behavior improves usability (preferably to the more fault tolerant please!). Measurement: Make a graph (flow chart really) mapping the ways a particular action could be done. Improvement is a reduction in the # of edges on the graph.
And so on... find some general UI tips, figure out some metrics like the above, and you can approximate usability improvement.
Once you have these design approximations of user improvement, and then gather longer term data, you can see if there is any predictive ability for the design-level usability improvements to the end-user reaction (like: Over the last 10 projects, we've seen an average of 1% quicker scenarios for each action removed, with a range of 0.25% and standard dev of 0.32%).
The first way can be fully subjective or partly quantified: user complaints and positive feedbacks. The problem with this is that you may have some strong biases when it comes to filter those feedbacks, so you better make as quantitative as possible. Having some ticketing system to file every report from the users and gathering statistics about each version of the interface might be useful. Just get your statistics right.
The second way is to measure the difference in a questionnaire taken about the interface by end-users. Answers to each question should be a set of discrete values and then again you can gather statistics for each version of the interface.
The latter way may be much harder to setup (designing a questionnaire and possibly the controlled environment for it as well as the guidelines to interpret the results is a craft by itself) but the former makes it unpleasantly easy to mess up with the measurements. For example, you have to consider the fact that the number of tickets you get for each version is dependent on the time it is used, and that all time ranges are not equal (e.g. a whole class of critical issues may never be discovered before the third or fourth week of usage, or users might tend not to file tickets the first days of use, even if they find issues, etc.).
Torial stole my answer. Although if there is a measure of how long it takes to do a certain task. If the time is reduced and the task is still completed, then that's a good thing.
Also, if there is a way to record the number of cancels, then that would work too.

Resources