machine learning algorithm for spelling check - text

I have a list of medicine names(regular_list) and a list of new names(new_list).I want to check whether the names in the new_list are already present in the regular_list or not.The issue is that the names new_list could have some typo errors and I want those name to be considered as a match to the regular list. I know that using stringdist is a solution to the problem but I need a machine learning algorithm

As it was already mentioned here machine learning to overcome typo errors , machine learning tools are too much for such task, but the simplest possibility would be to merge those approaches.
On one hand, you can compute the edit distance between given word x and each of the dictionary words d_i. Additionaly, you can traing per-word classifier
c(d_i, distance(x,d_i))
returning True (class 1) if a given edit distance has been learned to be sufficient to consider x a missspelled version of d_i. This can give you more general model then not using machine learning, as you can have different thresholds for each dictionary word (some words are more often misspelled then others), but obviously, you have to prepare a training set in form of (misspelled_word, correct_one) (and add also (correct_one, correct_one).
You can use any type of binary classifier for such task, which can work on "real" input data.

Related

similarity measurement among names?

I have a list of names with me and iam trying to find the most similar 5 names from the list of any given name as a query.
I thought of applying word2vec or else using Text.similar() from nltk.
but iam not sure whether these will work for names as well.
any similarity measure would work for me.
any suggestions?
this not for any project but just i wanted to learn new things.
Since you added NLTK, I assume you are fine working in Python.
Check out the Jellyfish library which contains 10 different algorithms for comparing strings. Some of them will compare just the characters while others will try to guess how a string would be pronounced and help you identify other phrases that are very differently spelt but would sound similar.
The actual algorithms are all written in C and so this library is pretty efficient!
I think you will find the Jaro-Winkler distance to be most useful. Also check out this paper.

Embeddings vs text cleaning (NLP)

I am a graduate student focusing on ML and NLP. I have a lot of data (8 million lines) and the text is usually badly written and contains so many spelling mistakes.
So i must go through some text cleaning and vectorizing. To do so, i considered two approaches:
First one:
cleaning text by replacing bad words using hunspell package which is a spell checker and morphological analyzer
+
tokenization
+
convert sentences to vectors using tf-idf
The problem here is that sometimes, Hunspell fails to provide the correct word and changes the misspelled word with another word that don't have the same meaning. Furthermore, hunspell does not reconize acronyms or abbreviation (which are very important in my case) and tends to replace them.
Second approache:
tokenization
+
using some embeddings methode (like word2vec) to convert words into vectors without cleaning text
I need to know if there is some (theoretical or empirical) way to compare this two approaches :)
Please do not hesitate to respond If you have any ideas to share, I'd love to discuss them with you.
Thank you in advance
I post this here just to summarise the comments in a longer form and give you a bit more commentary. No sure it will answer your question. If anything, it should show you why you should reconsider it.
Points about your question
Before I talk about your question, let me point a few things about your approaches. Word embeddings are essentially mathematical representations of meaning based on word distribution. They are the epitome of the phrase "You shall know a word by the company it keeps". In this sense, you will need very regular misspellings in order to get something useful out of a vector space approach. Something that could work out, for example, is US vs. UK spelling or shorthands like w8 vs. full forms like wait.
Another point I want to make clear (or perhaps you should do that) is that you are not looking to build a machine learning model here. You could consider the word embeddings that you could generate, a sort of a machine learning model but it's not. It's just a way of representing words with numbers.
You already have the answer to your question
You yourself have pointed out that using hunspell introduces new mistakes. It will be no doubt also the case with your other approach. If this is just a preprocessing step, I suggest you leave it at that. It is not something you need to prove. If for some reason you do want to dig into the problem, you could evaluate the effects of your methods through an external task as #lenz suggested.
How does external evaluation work?
When a task is too difficult to evaluate directly we use another task which is dependent on its output to draw conclusions about its success. In your case, it seems that you should pick a task that depends on individual words like document classification. Let's say that you have some sort of labels associated with your documents, say topics or types of news. Predicting these labels could be a legitimate way of evaluating the efficiency of your approaches. It is also a chance for you to see if they do more harm than good by comparing to the baseline of "dirty" data. Remember that it's about relative differences and the actual performance of the task is of no importance.

Techniques other than RegEx to discover 'intent' in sentences

I'm embarking on a project for a non-profit organization to help process and classify 1000's of reports annually from their field workers / contractors the world over. I'm relatively new to NLP and as such wanted to seek the group's guidance on the approach to solve our problem.
I'll highlight the current process, and our challenges and would love your help on the best way to solve our problem.
Current process: Field officers submit reports from locally run projects in the form of best practices. These reports are then processed by a full-time team of curators who (i) ensure they adhere to a best-practice template and (ii) edit the documents to improve language/style/grammar.
Challenge: As the number of field workers increased the volume of reports being generated has grown and our editors are now becoming the bottle-neck.
Solution: We would like to automate the 1st step of our process i.e., checking the document for compliance to the organizational best practice template
Basically, we need to ensure every report has 3 components namely:
1. States its purpose: What topic / problem does this best practice address?
2. Identifies Audience: Who is this for?
3. Highlights Relevance: What can the reader do after reading it?
Here's an example of a good report submission.
"This document introduces techniques for successfully applying best practices across developing countries. This study is intended to help low-income farmers identify a set of best practices for pricing agricultural products in places where there is no price transparency. By implementing these processes, farmers will be able to get better prices for their produce and raise their household incomes."
As of now, our approach has been to use RegEx and check for keywords. i.e., to check for compliance we use the following logic:
1 To check "states purpose" = we do a regex to match 'purpose', 'intent'
2 To check "identifies audience" = we do a regex to match with 'identifies', 'is for'
3 To check "highlights relevance" = we do a regex to match with 'able to', 'allows', 'enables'
The current approach of RegEx seems very primitive and limited so I wanted to ask the community if there is a better way to solving this problem using something like NLTK, CoreNLP.
Thanks in advance.
Interesting problem, i believe its a thorough research problem! In natural language processing, there are few techniques that learn and extract template from text and then can use them as gold annotation to identify whether a document follows the template structure. Researchers used this kind of system for automatic question answering (extract templates from question and then answer them). But in your case its more difficult as you need to learn the structure from a report. In the light of Natural Language Processing, this is more hard to address your problem (no simple NLP task matches with your problem definition) and you may not need any fancy model (complex) to resolve your problem.
You can start by simple document matching and computing a similarity score. If you have large collection of positive examples (well formatted and specified reports), you can construct a dictionary based on tf-idf weights. Then you can check the presence of the dictionary tokens. You can also think of this problem as a binary classification problem. There are good machine learning classifiers such as svm, logistic regression which works good for text data. You can use python and scikit-learn to build programs quickly and they are pretty easy to use. For text pre-processing, you can use NLTK.
Since the reports will be generated by field workers and there are few questions that will be answered by the reports (you mentioned about 3 specific components), i guess simple keyword matching techniques will be a good start for your research. You can gradually move to different directions based on your observations.
This seems like a perfect scenario to apply some machine learning to your process.
First of all, the data annotation problem is covered. This is usually the most annoying problem. Thankfully, you can rely on the curators. The curators can mark the specific sentences that specify: audience, relevance, purpose.
Train some models to identify these types of clauses. If all the classifiers fire for a certain document, it means that the document is properly formatted.
If errors are encountered, make sure to retrain the models with the specific examples.
If you don't provide yourself hints about the format of the document this is an open problem.
What you can do thought, is ask people writing report to conform to some format for the document like having 3 parts each of which have a pre-defined title like so
1. Purpose
Explains the purpose of the document in several paragraph.
2. Topic / Problem
This address the foobar problem also known as lorem ipsum feeling text.
3. Take away
What can the reader do after reading it?
You parse this document from .doc format for instance and extract the three parts. Then you can go through spell checking, grammar and text complexity algorithm. And finally you can extract for instance Named Entities (cf. Named Entity Recognition) and low TF-IDF words.
I've been trying to do something very similar with clinical trials, where most of the data is again written in natural language.
If you do not care about past data, and have control over what the field officers write, maybe you can have them provide these 3 extra fields in their reports, and you would be done.
Otherwise; CoreNLP and OpenNLP, the libraries that I'm most familiar with, have some tools that can help you with part of the task. For example; if your Regex pattern matches a word that starts with the prefix "inten", the actual word could be "intention", "intended", "intent", "intentionally" etc., and you wouldn't necessarily know if the word is a verb, a noun, an adjective or an adverb. POS taggers and the parsers in these libraries would be able to tell you the type (POS) of the word and maybe you only care about the verbs that start with "inten", or more strictly, the verbs spoken by the 3rd person singular.
CoreNLP has another tool called OpenIE, which attempts to extract relations in a sentence. For example, given the following sentence
Born in a small town, she took the midnight train going anywhere
CoreNLP can extract the triple
she, took, midnight train
Combined with the POS tagger for example; you would also know that "she" is a personal pronoun and "took" is a past tense verb.
These libraries can accomplish many other tasks such as tokenization, sentence splitting, and named entity recognition and it would be up to you to combine all of these tools with your domain knowledge and creativity to come up with a solution that works for your case.

Extract Person Name from unstructure text

I have a collection of bills and Invoices, so there is no context in the text (i mean they don't tell a story).
I want to extract people names from those bills.
I tried OpenNLP but the quality of trained model is not good because i don't have context.
so the first question is: can I train model contains only people names without context? and if that possible can you give me good article for how i build that new model (most of the article that i read didn't explain the steps that i should made to build new model).
I have database name with more than 100,000 person name (first name, last name), so if the NER systems don't work in my case (because there is no context), what is the best way to search for those candidates (I mean searching for every first name with all other last names?)
thanks.
Regarding "context", I guess you mean that you don't have entire sentences, i.e. no previous / next tokens, and in this case you face quite a non-standard NER. I am not aware of available software or training data for this particular problem, if you found none you'll have to build your own corpus for training and/or evaluation purposes.
Your database of names will probably greatly help, depending indeed on what proportion of bill names are actually present in the database. You'll also probably have to rely on character-level morphology of names, as patterns (see for instance patterns in [1]). Once you have a training set with features (presence in database, morphology, other information of bill) and solutions (actual names of annotated bills), using standard machine-learning as SVM will be quite straightforward (if you are not familiar with this, just ask).
Some other suggestions:
You may most probably also use other bill's information: company name, positions, tax mentions, etc.
You may also proceed in a a selective manner - if all bills should mention (exactly?) one person name, you may exclude all other texts (e.g. amounts, tax names, positions etc.) or assume in a dedicated model that among all text in a bill, only one should be guessed as a name.
[1] Ranking algorithms for named-entity extraction: Boosting and the voted perceptron (Michael Collins, 2002)
I'd start with some regular expressions, then possibly augment that with a dictionary-based approach (i.e., big list of names).
No matter what you do, it won't be perfect, so be sure to keep that in mind.

Finding words from a dictionary in a string of text

How would you go about parsing a string of free form text to detect things like locations and names based on a dictionary of location and names? In my particular application there will be tens of thousands if not more entries in my dictionaries so I'm pretty sure just running through them all is out of the question. Also, is there any way to add "fuzzy" matching so that you can also detect substrings that are within x edits of a dictionary word? If I'm not mistaken this falls within the field of natural language processing and more specifically named entity recognition (NER); however, my attempt to find information about the algorithms and processes behind NER have come up empty. I'd prefer to use Python for this as I'm most familiar with that although I'm open to looking at other solutions.
You might try downloading the Stanford Named Entity Recognizer:
http://nlp.stanford.edu/software/CRF-NER.shtml
If you don't want to use someone else's code and you want to do it yourself, I'd suggest taking a look at the algorithm in their associated paper, because the Conditional Random Field model that they use for this has become a fairly common approach to NER.
I'm not sure exactly how to answer the second part of your question on looking for substrings without more details. You could modify the Stanford program, or you could use a part-of-speech tagger to mark proper nouns in the text. That wouldn't distinguish locations from names, but it would make it very simple to find words that are x words away from each proper noun.

Resources