MPI_Bcast using threads (OpenMP) in MPI - multithreading

The MPI standard 3.0 says in Section 5.13 that
Finally, in multithreaded implementations, one can have more than one,
concurrently executing, collective communication call at a process. In
these situations, it is the user’s re- sponsibility to ensure that the
same communicator is not used concurrently by two different collective
communication calls at the same process.
I wrote the following program which does NOT execute correctly (but compiles) and dumps a core
void main(int argc, char *argv[])
{
int required = MPI_THREAD_MULTIPLE, provided, rank, size, threadID, threadProcRank ;
MPI_Comm comm = MPI_COMM_WORLD ;
MPI_Init_thread(&argc, &argv, required, &provided);
MPI_Comm_size(comm, &size);
MPI_Comm_rank(comm, &rank);
int buffer1[10000] = {0} ;
int buffer2[10000] = {0} ;
#pragma omp parallel private(threadID,threadProcRank) shared(comm, buffer1)
{
threadID = omp_get_thread_num();
MPI_Comm_rank(comm, &threadProcRank);
printf("\nMy thread ID is %d and I am in process ranked %d", threadID, threadProcRank);
if(threadID == 0)
MPI_Bcast(buffer1, 10000, MPI_INTEGER, 0, comm);
If (threadID == 1)
MPI_Bcast(buffer1, 10000, MPI_INTEGER, 0, comm);
}
MPI_Finalize();
}
My question is: Two threads in each process having thread ID 0 and thread ID 1 post a broadcast call which can be taken as a MPI_Send() in the root process ( i.e. process 0). I am interpreting it as two loops of MPI_Send() where the destination is the remaining processes. The destination processes also post MPI_Bcast() in thread ID 0 and thread ID 1. These can be taken as two MPI_Recv()'s posted by each process in the two threads. Since the MPI_Bcast() are identical - there should be no matching problems in receiving the messages sent by Process 0 (the root). But still the program does not work. Why ? Is it because of the possibility that messages might get mixed up on different/same collectives on the same communicator ? And since MPI (mpich2) sees the possibility of this, it just does not allow two collectives on the same communicator pending at the same time ?

First of all, you are not checking the value of provided where the MPI implementation returns the actually provided thread support level. The standard allows for this level to be lower than the requested one and a correct MPI application would rather do something like:
MPI_Init_thread(&argc, &argv, required, &provided);
if (provided < required)
{
printf("Error: MPI does not provide the required thread support\n");
MPI_Abort(MPI_COMM_WORLD, 1);
exit(1);
}
Second, this line of code is redundant:
MPI_Comm_rank(comm, &threadProcRank);
Threads in MPI do not have separate ranks - only processes have ranks. There was a proposal to bring the so-called endpoints in MPI 3.0 which would have allowed a single process to have more than one ranks and to bind them to different threads but it didn't make it into the final version of the standard.
Third, you are using the same buffer variable in both collectives. I guess your intention was to use buffer1 in the call in thread 0 and buffer2 in the call in thread 1. Also MPI_INTEGER is the datatype that corresponds to INTEGER in Fortran. For the C int type the corresponding MPI datatype is MPI_INT.
Fourth, the interpretation of MPI_BCAST as a loop of MPI_SEND and the corresponding MPI_RECV is just that - an interpretation. In reality the implementation is much different - see here. For example, with smaller messages where the initial network setup latency is much higher than the physical data transmission time, binary and binomial trees are used in order to minimise the latency of the collective. Larger messages are usually broken into many segments and then a pipeline is used to pass the segments from the root rank to all the others. Even in the tree distribution case the messages could still be segmented.
The catch is that in practice each collective operation is implemented using messages with the same tag, usually with negative tag values (these are not allowed to be used by the application programmer). That means that both MPI_Bcast calls in your case would use the same tags to transmit their messages and since the ranks would be the same and the communicator is the same, the messages would get all mixed up. Therefore the requirement for doing concurrent collectives only on separate communicators.
There are two reasons why your program crashes. Reason one is that the MPI library does not provide MPI_THREAD_MULTIPLE. The second reason is if the message is split in two unevenly sized chunks, e.g. a larger first part and a smaller second part. The interference between both collective calls could cause the second thread to receive a large first chunk directed to the first thread while waiting for the second smaller chunk. The result would be message truncation and the abort MPI error handler would get called. This usually does not result in segfault and core dumps, so I would suppose that your MPICH2 is simply not compiled as thread-safe.
This is not MPICH2-specific. Open MPI and other implementations are also prone to the same limitations.

Related

Linux Message Queue for OpenCV C++

I have a thread that gets new frames, 2 other threads that process the newly gotten image and 1 that prints the output based on the processing threads.
The program cycle goes,
>thread 3, print an output based on the previous outputs of the thread 0 and 1
>thread 0 get new image
>> thread 1, process image for color
>> thread 2, process image for haar cascade
going cyclically 3&0>1&2>3&0>1&2>
'>' indicates join before spawning the next set
How do I pass the opencv Mat between the threads 0 to 1&2?
Also how would I pass the data from threads 1&2 to thread 0?
I would guess a message queue system, how does one implement that?
I suspect I may get some abuse and down-votes for this because global variables are generally frowned upon, however I feel the situation is different in image-processing where:
the code is multi-threaded, and
the data structures (images) are large.
Here I think it is important to avoid expensive copying and "transmission" of data down sockets etc. when it is already available in memory that is shared and visible amongst threads.
So, in concrete terms, I would go for an array, or vector (according to your preference) of say 16 OpenCV Mats that is globally accessible.
Acquire into the first, notify the the next thread when that buffer is full, then acquire into the next. And so on.
As regards the notification, you have several options. The cleanest, and most modern is probably using condition variables letting each processing thread (not the acquiring thread) wait on a condvar for "buffer full". Next is probably POSIX message queues, though if you are porting to macOS later you may regret that as there is no support. Another, easily programmed method is to use sockets but just send a single byte that is the index into the global array of 16 Mats - that way there is no problem with incomplete, multi-byte reads on sockets. The processing threads then just sit in a loop doing blocking reads on the socket to know which buffer to process. You can also define a special index that means "quit".
Check the size of your images in terms of width x height x channels x bytes per channel and get a feel for how much memory a global vector of 16 Mats will need and be sure you have that available before using this strategy - you may be up against the wall with a Raspberry Pi for example.

multithreading: how to process data in a vector, while the vector is being populated?

I have a single-threaded linux app which I would like to make parallel. It reads a data file, creates objects, and places them in a vector. Then it calls a compute-intensive method (.5 second+) on each object. I want to call the method in parallel with object creation. While I've looked at qt and tbb, I am open to other options.
I planned to start the thread(s) while the vector was empty. Each one would call makeSolids (below), which has a while loop that would run until interpDone==true and all objects in the vector have been processed. However, I'm a n00b when it comes to threading, and I've been looking for a ready-made solution.
QtConcurrent::map(Iter begin,Iter end,function()) looks very easy, but I can't use it on a vector that's changing in size, can I? And how would I tell it to wait for more data?
I also looked at intel's tbb, but it looked like my main thread would halt if I used parallel_for or parallel_while. That stinks, since their memory manager was recommended (open cascade's mmgt has poor performance when multithreaded).
/**intended to be called by a thread
\param start the first item to get from the vector
\param skip how many to skip over (4 for 4 threads)
*/
void g2m::makeSolids(uint start, uint incr) {
uint curr = start;
while ((!interpDone) || (lineVector.size() > curr)) {
if (lineVector.size() > curr) {
if (lineVector[curr]->isMotion()) {
((canonMotion*)lineVector[curr])->setSolidMode(SWEPT);
((canonMotion*)lineVector[curr])->computeSolid();
}
lineVector[curr]->setDispMode(BEST);
lineVector[curr]->display();
curr += incr;
} else {
uio::sleep(); //wait a little bit for interp
}
}
}
EDIT: To summarize, what's the simplest way to process a vector at the same time that the main thread is populating the vector?
Firstly, to benefit from threading you need to find similarly slow tasks for each thread to do. You said your per-object processing takes .5s+, how long does your file reading / object creation take? It could easily be a tenth or a thousandth of that time, in which case your multithreading approach is going to produce neglegible benefit. If that's the case, (yes, I'll answer your original question soon incase it's not) then think about simultaneously processing multiple objects. Given your processing takes quite a while, the thread creation overhead isn't terribly significant, so you could simply have your main file reading/object creation thread spawn a new thread and direct it at the newly created object. The main thread then continues reading/creating subsequent objects. Once all objects are read/created, and all the processing threads launched, the main thread "joins" (waits for) the worker threads. If this will create too many threads (thousands), then put a limit on how far ahead the main thread is allowed to get: it might read/create 10 objects then join 5, then read/create 10, join 10, read/create 10, join 10 etc. until finished.
Now, if you really want the read/create to be in parallel with the processing, but the processing to be serialised, then you can still use the above approach but join after each object. That's kind of weird if you're designing this with only this approach in mind, but good because you can easily experiment with the object processing parallelism above as well.
Alternatively, you can use a more complex approach that just involves the main thread (that the OS creates when your program starts), and a single worker thread that the main thread must start. They should be coordinated using a mutex (a variable ensuring mutually-exclusive, which means not-concurrent, access to data), and a condition variable which allows the worker thread to efficiently block until the main thread has provided more work. The terms - mutex and condition variable - are the standard terms in the POSIX threading that Linux uses, so should be used in the explanation of the particular libraries you're interested in. Summarily, the worker thread waits until the main read/create thread broadcasts it a wake-up signal indicating another object is ready for processing. You may want to have a counter with index of the last fully created, ready-for-processing object, so the worker thread can maintain it's count of processed objects and move along the ready ones before once again checking the condition variable.
It's hard to tell if you have been thinking about this problem deeply and there is more than you are letting on, or if you are just over thinking it, or if you are just wary of threading.
Reading the file and creating the objects is fast; the one method is slow. The dependency is each consecutive ctor depends on the outcome of the previous ctor - a little odd - but otherwise there are no data integrity issues so there doesn't seem to be anything that needs to be protected by mutexes and such.
Why is this more complicated than something like this (in crude pseudo-code):
while (! eof)
{
readfile;
object O(data);
push_back(O);
pthread_create(...., O, makeSolid);
}
while(x < vector.size())
{
pthread_join();
x++;
}
If you don't want to loop on the joins in your main then spawn off a thread to wait on them by passing a vector of TIDs.
If the number of created objects/threads is insane, use a thread pool. Or put a counter is the creation loop to limit the number of threads that can be created before running ones are joined.
#Caleb: quite -- perhaps I should have emphasized active threads. The GUI thread should always be considered one.

Interview Question on .NET Threading

Could you describe two methods of synchronizing multi-threaded write access performed
on a class member?
Please could any one help me what is this meant to do and what is the right answer.
When you change data in C#, something that looks like a single operation may be compiled into several instructions. Take the following class:
public class Number {
private int a = 0;
public void Add(int b) {
a += b;
}
}
When you build it, you get the following IL code:
IL_0000: nop
IL_0001: ldarg.0
IL_0002: dup
// Pushes the value of the private variable 'a' onto the stack
IL_0003: ldfld int32 Simple.Number::a
// Pushes the value of the argument 'b' onto the stack
IL_0008: ldarg.1
// Adds the top two values of the stack together
IL_0009: add
// Sets 'a' to the value on top of the stack
IL_000a: stfld int32 Simple.Number::a
IL_000f: ret
Now, say you have a Number object and two threads call its Add method like this:
number.Add(2); // Thread 1
number.Add(3); // Thread 2
If you want the result to be 5 (0 + 2 + 3), there's a problem. You don't know when these threads will execute their instructions. Both threads could execute IL_0003 (pushing zero onto the stack) before either executes IL_000a (actually changing the member variable) and you get this:
a = 0 + 2; // Thread 1
a = 0 + 3; // Thread 2
The last thread to finish 'wins' and at the end of the process, a is 2 or 3 instead of 5.
So you have to make sure that one complete set of instructions finishes before the other set. To do that, you can:
1) Lock access to the class member while it's being written, using one of the many .NET synchronization primitives (like lock, Mutex, ReaderWriterLockSlim, etc.) so that only one thread can work on it at a time.
2) Push write operations into a queue and process that queue with a single thread. As Thorarin points out, you still have to synchronize access to the queue if it isn't thread-safe, but it's worth it for complex write operations.
There are other techniques. Some (like Interlocked) are limited to particular data types, and there are even more (like the ones discussed in Non-blocking synchronization and Part 4 of Joseph Albahari's Threading in C#), though they are more complex: approach them with caution.
In multithreaded applications, there are many situations where simultaneous access to the same data can cause problems. In such cases synchronization is required to guarantee that only one thread has access at any one time.
I imagine they mean using the lock-statement (or SyncLock in VB.NET) vs. using a Monitor.
You might want to read this page for examples and an understanding of the concept. However, if you have no experience with multithreaded application design, it will likely become quickly apparent, should your new employer put you to the test. It's a fairly complicated subject, with many possible pitfalls such as deadlock.
There is a decent MSDN page on the subject as well.
There may be other options, depending on the type of member variable and how it is to be changed. Incrementing an integer for example can be done with the Interlocked.Increment method.
As an excercise and demonstration of the problem, try writing an application that starts 5 simultaneous threads, incrementing a shared counter a million times per thread. The intended end result of the counter would be 5 million, but that is (probably) not what you will end up with :)
Edit: made a quick implementation myself (download). Sample output:
Unsynchronized counter demo:
expected counter = 5000000
actual counter = 4901600
Time taken (ms) = 67
Synchronized counter demo:
expected counter = 5000000
actual counter = 5000000
Time taken (ms) = 287
There are a couple of ways, several of which are mentioned previously.
ReaderWriterLockSlim is my preferred method. This gives you a database type of locking, and allows for upgrading (although the syntax for that is incorrect in the MSDN last time I looked and is very non-obvious)
lock statements. You treat a read like a write and just prevent access to the variable
Interlocked operations. This performs an operations on a value type in an atomic step. This can be used for lock free threading (really wouldn't recommend this)
Mutexes and Semaphores (haven't used these)
Monitor statements (this is essentially how the lock keyword works)
While I don't mean to denigrate other answers, I would not trust anything that does not use one of these techniques. My apologies if I have forgotten any.

can i easily write a program to make use of Intel's Quad core or i7 chip if only 1 thread is used?

I wonder if in my program I have only 1 thread, can I write it so that the Quad core or i7 can actually make use of the different cores? Usually when i write programs on a Quad core computer, the CPU usage will only go to about 25%, and the work seems to be divided among the 4 cores, as the Task Manager shows. (the programs i wrote usually is Ruby, Python, or PHP, so they may not be so much optimized).
Update: what if i write it in C or C++ instead, and
for (i = 0; i < 100000000; i++) {
a = i * 2;
b = i + 1;
if (a == ... || b == ...) { ... }
}
and then use the highest level of optimization with the compiler. can the compiler make the multiplication happen on one core, and the addition happen on a different core, and therefore make 2 cores work at the same time? isn't that a fairly easy optimization to use 2 cores?
No. You need to use threads to execute multiple paths concurrently on multiple CPU's (be they real or virtual)... execution of one thread is inherently bound to one CPU as this maintains the "happens before" relationship between statements, which is central to how programs work.
First, unless multiple threads are created in the program, then there is only a single thread of execution in that program.
Seeing 25% of CPU resources being used for the program is an indication that a single core out of four is being utilized at 100%, but all other cores are not being used. If all cores were used, then it would be theoretically possible for the process to hog 100% of the CPU resources.
As a side note, the graphs shown in Task Manager in Windows is the CPU utilization by all processes running at the time, not only for one process.
Secondly, the code you present could be split into code which can execute on two separate threads in order to execute on two cores. I am guessing that you want to show that a and b are independent of each other, and they only depend on i. With that type of situation, separating the inside of the for loop like the following could allow multi-threaded operation which could lead to increased performance:
// Process this in one thread:
for (int i = 0; i < 1000; i++) {
a = i * 2;
}
// Process this in another thread:
for (int i = 0; i < 1000; i++) {
b = i + 1;
}
However, what becomes tricky is if there needs to be a time when the results from the two separate threads need to be evaluated, such as seems to be implied by the if statement later on:
for (i = 0; i < 1000; i++) {
// manipulate "a" and "b"
if (a == ... || b == ...) { ... }
}
This would require that the a and b values which reside in separate threads (which are executing on separate processors) to be looked up, which is a serious headache.
There is no real good guarantee that the i values of the two threads are the same at the same time (after all, multiplication and addition probably will take different amount of times to execute), and that means that one thread may need to wait for another for the i values to get in sync before comparing the a and b that corresponds to the dependent value i. Or, do we make a third thread for value comparison and synchronization of the two threads? In either case, the complexity is starting to build up very quickly, so I think we can agree that we're starting to see a serious mess arising -- sharing states between threads can be very tricky.
Therefore, the code example you provide is only partially parallelizable without much effort, however, as soon as there is a need to compare the two variables, separating the two operations becomes very difficult very quickly.
Couple of rules of thumbs when it comes to concurrent programming:
When there are tasks which can be broken down into parts which involve processing of data that is completely independent of other data and its results (states), then parallelizing can be very easy.
For example, two functions which calculates a value from an input (in pseudocode):
f(x) = { return 2x }
g(x) = { return x+1 }
These two functions don't rely on each other, so they can be executed in parallel without any pain. Also, as they are no states to share or handle between calculations, even if there were multiple values of x that needed to be calculated, even those can be split up further:
x = [1, 2, 3, 4]
foreach t in x:
runInThread(f(t))
foreach t in x:
runInThread(g(t))
Now, in this example, we can have 8 separate threads performing calculations. Not having side effects can be very good thing for concurrent programming.
However, as soon as there is dependency on data and results from other calculations (which also means there are side effects), parallelization becomes extremely difficult. In many cases, these types of problems will have to be performed in serial as they await results from other calculations to be returned.
Perhaps the question comes down to, why can't compilers figure out parts that can be automatically parallelized and perform those optimizations? I'm not an expert on compilers so I can't say, but there is an article on automatic parallization at Wikipedia which may have some information.
I know Intel chips very well.
Per your code, "if (a == ... || b == ...)" is a barrier, otherwise the processor cores will execute all code parallelly, regardless of compiler had done what kind of optimization. That only requires that the compiler is not a very "stupid" one. It means that the hardware has the capability itself, not software. So threaded programming or OpenMP is not necessary in such cases though they will help on improving parallel computing. Note here doesn't mean Hyper-threading, just normal multi-core processor functionalities.
Please google "processor pipeline multi port parallel" to learn more.
Here I'd like to give a classical example which could be executed by multi-core/multi-channel IMC platforms (e.g. Intel Nehalem family such as Core i7) parallelly, no extra software optimization would be needed.
char buffer0[64];
char buffer1[64];
char buffer2[64];
char buffer[192];
int i;
for (i = 0; i < 64; i++) {
*(buffer + i) = *(buffer0 + i);
*(buffer + 64 + i) = *(buffer1 + i);
*(buffer + 128 + i) = *(buffer2 + i);
}
Why? 3 reasons.
1 Core i7 has a triple-channel IMC, its bus width is 192 bits, 64 bits per channel; and memory address space is interleaved among the channels on a per cache-line basis. cache-line length is 64 bytes. so basicly buffer0 is on channel 0, buffer1 will be on channel and buffer2 on channel 2; while for buffer[192], it was interleaved among 3 channels evently, 64 per channel. The IMC supports loading or storing data from or to multiple channels concurrently. That's multi-channel MC burst w/ maximum throughput. While in my following description, I'll only say 64 bytes per channel, say w/ BL x8 (Burst Length 8, 8 x 8 = 64 bytes = cache-line) per channel.
2 buffer0..2 and buffer are continuous in the memory space (on a specific page both virtually and physically, stack memroy). when run, buffer0, 1, 2 and buffer are loaded/fetched into the processor cache, 6 cache-lines in total. so after start the execution of above "for(){}" code, accessing memory is not necessary at all because all data are in the cache, L3 cache, a non-core part, which is shared by all cores. We'll not talk about L1/2 here. In this case every core could pick the data up and then compute them independently, the only requirement is that the OS supports MP and stealing task is allowed, say runtime scheduling and affinities sharing.
3 there're no any dependencies among buffer0, 1, 2 and buffer, so there're no execution stall or barriers. e.g. execute *(buffer + 64 + i) = *(buffer1 + i) doesn't need to wait the execution of *(buffer + i) = *(buffer0 + i) for done.
Though, the most important and difficult point is "stealing task, runtime scheduling and affinities sharing", that's because for a give task, there's only one task exection context and it should be shared by all cores to perform parallel execution. Anyone if could understand this point, s/he is among the top experts in the world. I'm looking for such an expert to cowork on my open source project and be responsible for parallel computing and latest HPC architectures related works.
Note in above example code, you also could use some SIMD instructions such as movntdq/a which will bypass processor cache and write memory directly. It's a very good idea too when perform software level optimization, though accessing memory is extremely expensive, for example, accessing cache (L1) may need just only 1 cycle, but accessing memory needs 142 cycles on former x86 chips.
Please visit http://effocore.googlecode.com and http://effogpled.googlecode.com to know the details.
Implicit parallelism is probably what you are looking for.
If your application code is single-threaded multiple processors/cores will only be used if:
the libraries you use are using multiple threads (perhaps hiding this usage behind a simple interface)
your application spawns other processes to perform some part of its operation
Ruby, Python and PHP applications can all be written to use multiple threads, however.
A single threaded program will only use one core. The operating system might well decide to shift the program between cores from time to time - according to some rules to balance the load etc. So you will see only 25% usage overall and the all four cores working - but only one at once.
The only way to use multiple cores without using multithreading is to use multiple programs.
In your example above, one program could handle 0-2499999, the next 2500000-4999999, and so on. Set all four of them off at the same time, and they will use all four cores.
Usually you would be better off writing a (single) multithreaded program.
With C/C++ you can use OpenMP. It's C code with pragmas like
#pragma omp parallel for
for(..) {
...
}
to say that this for will run in parallel.
This is one easy way to parallelize something, but at some time you will have to understand how parallel programs execute and will be exposed to parallel programming bugs.
If you want to parallel the choice of the "i"s that evaluate to "true" your statement if (a == ... || b == ...) then you can do this with PLINQ (in .NET 4.0):
//note the "AsParallel"; that's it, multicore support.
var query = from i in Enumerable.Range(0, 100000000).AsParallel()
where (i % 2 == 1 && i >= 10) //your condition
select i;
//while iterating, the query is evaluated in parallel!
//Result will probably never be in order (eg. 13, 11, 17, 15, 19..)
foreach (var selected in query)
{
//not parallel here!
}
If, instead, you want to parallelize operations, you will be able to do:
Parallel.For(0, 100000000, i =>
{
if (i > 10) //your condition here
DoWork(i); //Thread-safe operation
});
Since you are talking about 'task manager', you appear to be running on Windows. However, if you are running a webserver on there (for Ruby or PHP with fcgi or Apache pre-forking, ant to a lesser extent other Apache workers), with multiple processes, then they would tend to spread out across the cores.
If only a single program without threading is running, then, no, no significant advantage will come from that - you're only ruinning one thing at a time, other than OS-driven background processes.

What can make a program run slower when using more threads?

This question is about the same program I previously asked about. To recap, I have a program with a loop structure like this:
for (int i1 = 0; i1 < N; i1++)
for (int i2 = 0; i2 < N; i2++)
for (int i3 = 0; i3 < N; i3++)
for (int i4 = 0; i4 < N; i4++)
histogram[bin_index(i1, i2, i3, i4)] += 1;
bin_index is a completely deterministic function of its arguments which, for purposes of this question, does not use or change any shared state - in other words, it is manifestly reentrant.
I first wrote this program to use a single thread. Then I converted it to use multiple threads, such that thread n runs all iterations of the outer loop where i1 % nthreads == n. So the function that runs in each thread looks like
for (int i1 = n; i1 < N; i1 += nthreads)
for (int i2 = 0; i2 < N; i2++)
for (int i3 = 0; i3 < N; i3++)
for (int i4 = 0; i4 < N; i4++)
thread_local_histogram[bin_index(i1, i2, i3, i4)] += 1;
and all the thread_local_histograms are added up in the main thread at the end.
Here's the strange thing: when I run the program with just 1 thread for some particular size of the calculation, it takes about 6 seconds. When I run it with 2 or 3 threads, doing exactly the same calculation, it takes about 9 seconds. Why is that? I would expect that using 2 threads would be faster than 1 thread since I have a dual-core CPU. The program does not use any mutexes or other synchronization primitives so two threads should be able to run in parallel.
For reference: typical output from time (this is on Linux) for one thread:
real 0m5.968s
user 0m5.856s
sys 0m0.064s
and two threads:
real 0m9.128s
user 0m10.129s
sys 0m6.576s
The code is at http://static.ellipsix.net/ext-tmp/distintegral.ccs
P.S. I know there are libraries designed for exactly this kind of thing that probably could have better performance, but that's what my last question was about so I don't need to hear those suggestions again. (Plus I wanted to use pthreads as a learning experience.)
To avoid further comments on this: When I wrote my reply, the questioner hasn't posted a link to his source yet, so I could not tailor my reply to his specific issues. I was only answering the general question what "can" cause such an issue, I never said that this will necessarily apply to his case. When he posted a link to his source, I wrote another reply, that is exactly only focusing on his very issue (which is caused by the use of the random() function as I explained in my other reply). However, since the question of this post is still "What can make a program run slower when using more threads?" and not "What makes my very specific application run slower?", I've seen no need to change my rather general reply either (general question -> general response, specific question -> specific response).
1) Cache Poisoning
All threads access the same array, which is a block of memory. Each core has its own cache to speed up memory access. Since they don't just read from the array but also change the content, the content is changed actually in the cache only, not in real memory (at least not immediately). The problem is that the other thread on the other core may have overlapping parts of memory cached. If now core 1 changes the value in the cache, it must tell core 2 that this value has just changed. It does so by invalidating the cache content on core 2 and core 2 needs to re-read the data from memory, which slows processing down. Cache poisoning can only happen on multi-core or multi-CPU machines. If you just have one CPU with one core this is no problem. So to find out if that is your issue or not, just disable one core (most OSes will allow you to do that) and repeat the test. If it is now almost equally fast, that was your problem.
2) Preventing Memory Bursts
Memory is read fastest if read sequentially in bursts, just like when files are read from HD. Addressing a certain point in memory is actually awfully slow (just like the "seek time" on a HD), even if your PC has the best memory on the market. However, once this point has been addressed, sequential reads are fast. The first addressing goes by sending a row index and a column index and always having waiting times in between before the first data can be accessed. Once this data is there, the CPU starts bursting. While the data is still on the way it sends already the request for the next burst. As long as it is keeping up the burst (by always sending "Next line please" requests), the RAM will continue to pump out data as fast as it can (and this is actually quite fast!). Bursting only works if data is read sequentially and only if the memory addresses grow upwards (AFAIK you cannot burst from high to low addresses). If now two threads run at the same time and both keep reading/writing memory, however both from completely different memory addresses, each time thread 2 needs to read/write data, it must interrupt a possible burst of thread 1 and the other way round. This issue gets worse if you have even more threads and this issue is also an issue on a system that has only one single-core CPU.
BTW running more threads than you have cores will never make your process any faster (as you mentioned 3 threads), it will rather slow it down (thread context switches have side effects that reduce processing throughput) - that is unlike you run more threads because some threads are sleeping or blocking on certain events and thus cannot actively process any data. In that case it may make sense to run more threads than you have cores.
Everything I said so far in my other reply holds still true on general, as your question was what "can"... however now that I've seen your actual code, my first bet would be that your usage of the random() function slows everything down. Why?
See, random keeps a global variable in memory that stores the last random value calculated there. Each time you call random() (and you are calling it twice within a single function) it reads the value of this global variable, performs a calculation (that is not so fast; random() alone is a slow function) and writes the result back there before returning it. This global variable is not per thread, it is shared among all threads. So what I wrote regarding cache poisoning applies here all the time (even if you avoided it for the array by having separated arrays per thread; this was very clever of you!). This value is constantly invalidated in the cache of either core and must be re-fetched from memory. However if you only have a single thread, nothing like that happens, this variable never leaves cache after it has been initially read, since it's permanently accessed again and again and again.
Further to make things even worse, glibc has a thread-safe version of random() - I just verified that by looking at the source. While this seems to be a good idea in practice, it means that each random() call will cause a mutex to be locked, memory to be accessed, and a mutex to be unlocked. Thus two threads calling random exactly the same moment will cause one thread to be blocked for a couple of CPU cycles. This is implementation specific, though, as AFAIK it is not required that random() is thread safe. Most standard lib functions are not required to be thread-safe, since the C standard is not even aware of the concept of threads in the first place. When they are not calling it the same moment, the mutex will have no influence on speed (as even a single threaded app must lock/unlock the mutex), but then cache poisoning will apply again.
You could pre-build an array with random numbers for every thread, containing as many random number as each thread needs. Create it in the main thread before spawning the threads and add a reference to it to the structure pointer you hand over to every thread. Then get the random numbers from there.
Or just implement your own random number generator if you don't need the "best" random numbers on the planet, that works with per-thread memory for holding its state - that one might be even faster than the system's built-in generator.
If a Linux only solution works for you, you can use random_r. It allows you to pass the state with every call. Just use a unique state object per thread. However this function is a glibc extension, it is most likely not supported by other platforms (neither part of the C standards nor of the POSIX standards AFAIK - this function does not exist on Mac OS X for example, it may neither exist in Solaris or FreeBSD).
Creating an own random number generator is actually not that hard. If you need real random numbers, you shouldn't use random() in the first place. Random only creates pseudo-random numbers (numbers that look random, but are predictable if you know the generator's internal state). Here's the code for one that produces good uint32 random numbers:
static uint32_t getRandom(uint32_t * m_z, uint32_t * m_w)
{
*m_z = 36969 * (*m_z & 65535) + (*m_z >> 16);
*m_w = 18000 * (*m_w & 65535) + (*m_w >> 16);
return (*m_z << 16) + *m_w;
}
It's important to "seed" m_z and m_w in a proper way somehow, otherwise the results are not random at all. The seed value itself should already be random, but here you could use the system random number generator.
uint32_t m_z = random();
uint32_t m_w = random();
uint32_t nextRandom;
for (...) {
nextRandom = getRandom(&m_z, &m_w);
// ...
}
This way every thread only needs to call random() twice and then uses your own generator. BTW, if you need double randoms (that are between 0 and 1), the function above can be easily wrapped for that:
static double getRandomDouble(uint32_t * m_z, uint32_t * m_w)
{
// The magic number below is 1/(2^32 + 2).
// The result is strictly between 0 and 1.
return (getRandom(m_z, m_w) + 1) * 2.328306435454494e-10;
}
Try to make this change in your code and let me know how the benchmark results are :-)
You are seeing cache line bouncing. I'm really surprised that you don't get wrong results, due to race conditions on the histogram buckets.
One possibility is that the time taken to create the threads exceeds the savings gained by using threads. I would think that N is not very large, if the elapsed time is only 6 seconds for a O(n^4) operation.
There's also no guarantee that multiple threads will run on different cores or CPUs. I'm not sure what the default thread affinity is with Linux - it may be that both threads run on a single core which would negate the benefits of a CPU-intensive piece of code such as this.
This article details default thread affinity and how to change your code to ensure threads run on specific cores.
Even though threads don't access the same elements of the array at the same, the whole array may sit in a few memory pages. When one core/processor writes to that page, it has to invalidate its cache for all other processors.
Avoid having many threads working over the same memory space. Allocate separate data for each thread to work upon, then join them together when the calculation finishes.
Off the top of my head:
Context switches
Resource contention
CPU contention (if they aren't getting split to multiple CPUs).
Cache thrashing
David,
Are you sure you run a kernel that supports multiple processors? If only one processor is utilized in your system, spawning additional CPU-intensive threads will slow down your program.
And, are you sure support for threads in your system actually utilizes multiple processors? Does top, for example, show that both cores in your processor utilized when you run your program?

Resources