Thread Safety with Classes an Accessors - multithreading

Okay so I have three classes, ClassOne, ClassTwo, and ClassThree.
ClassOne is ran in the Main Thread, ClassTwo is ran in Thread ThreadTwo, and ClassThree is ran in ThreadThree.
In ClassTwo and in ClassThree I make calls to ClassOne and vice-versa.
ClassTwo::SomeMethod(){
int l_SomeVar = m_ClassOnePointer->SomeAccessorMethod() // return m_SomeVariable
int l_SomeVar = m_ClassOnePointer->SomeConstAccessor() // SomeConstAccessor() const;
int l_SomeVar = m_ClassOnePointer->m_SomeVariable; // Just a standard public int (not const, static, or volatile).
m_ClassOnePointer->m_SetSomeVariable(30);
m_ClassOnePointer->m_SomeVariable = 30;
Currently I use accessors and const accessors, but I don't know if its safe for threading, If it isn't how would I go about safely doing this without locks.

No, it's not thread-safe. As for getters for arbitrary types without locks - I've got nuthin.. The const doesn't help - just because the getter declares it's not going to change member vars doesn't mean some other threads can't change them. Other threads may call setters, or perhaps ClassOne has an internal thread that's changing them.

Related

Accessing an atomic member of a class held by a shared_ptr

I'm trying to create a small class that will allow me to facilitate a communication between two threads.
Those threads most probably will outlive the context in which the above mentioned class was created as they are queued onto a thread pool.
What I have tried so far (on coliru as well):
class A
{
public:
A(int maxVal) : maxValue(maxVal) {}
bool IsOverMax() const { return cur >= maxValue; }
void Increase() { cur++; }
private:
const int maxValue;
atomic_int cur{ 0 };
};
possible usage:
void checking(const shared_ptr<A> counter)
{
while(!counter->IsOverMax())
{
cout<<"Working\n"; // do work
std::this_thread::sleep_for(10ms);
}
}
void counting(shared_ptr<A> counter)
{
while (!counter->IsOverMax())
{
cout<<"Counting\n";
counter->Increase(); // does this fall under `...uses a non-const member function of shared_ptr then a data race will occur`? http://en.cppreference.com/w/cpp/memory/shared_ptr/atomic
std::this_thread::sleep_for(9ms);
}
}
int main()
{
unique_ptr<thread> t1Ptr;
unique_ptr<thread> t2Ptr;
{
auto aPtr = make_shared<A>(100); // This might be out of scope before t1 and t2 end
t1Ptr.reset(new thread(checking, aPtr)); // To simbolize that t1,t2 will outlive the scope in which aPtr was originaly created
t2Ptr.reset(new thread(counting, aPtr));
}
t2Ptr->join();
t1Ptr->join();
//cout<< aPtr->IsOverMax();
}
The reason I'm concerned is that the documentation says that:
If multiple threads of execution access the same std::shared_ptr object without synchronization and any of those accesses uses a non-const member function of shared_ptr then a data race will occur unless all such access is performed through these functions, which are overloads of the corresponding atomic access functions (std::atomic_load, std::atomic_store, etc.)
So Increase is a non const function, are the copies of aPtr are the same std::shared_ptr for this context or not ?
Is this code thread-safe?
Would this be OK for a non atomic object (say using an std::mutex to lock around reads and writes to a regular int)?
In any case why?
So Increase is a non const function, are the copies of aPtr are the same std::shared_ptr for this context or not ?
At std::thread creation, aPtr is passed by value. Therefore, it is guaranteed that:
You don't introduce a data race since each thread gets its own instance of shared_ptr (although they manage the same object A).
The documentation you are referring to describes a scenario whereby multiple threads operate on the same shared_ptr instance.
In that case, only const member functions can be called (see below), or synchronization is required.
shared_ptr reference-count is incremented before aPtr goes out of scope in main
So yes, this is a correct way to use shared_ptr.
Is this code thread-safe?
Your code does not introduce a data race, neither with access to shared_ptr instances, nor with access to the managed object A.
This means that there are no conflicting, non-atomic, read and write operations to the same memory location performed by multiple threads.
However, keep in mind that, in checking(), the call to IsOverMax() is separated from the actual work that follows
(Increase() could be called by the second thread after IsOverMax() but before 'do work'). Therefore, you could 'do work' while cur has gone over its maximum.
Whether or not that is a problem depends on your specification, but it is called a race condition which is not necessarily a programming error (unlike a data race which causes undefined behavior).
Would this be OK for a non atomic object (say using an std::mutex to lock around reads and writes to a regular int)?
cur can be a regular int (non-atomic) if you protect it with a std::mutex. The mutex must be locked for both write and read access in order to prevent a data race.
One remark on calling const member functions on objects shared by multiple threads.
The use of const alone does not guarantee that no data race is introduced.
In this case, the guarantee applies to shared_ptr const member functions, because the documentation says so.
I cannot find in the C++ standard whether that guarantee applies to all const member functions in the Standard Library
That documentation is talking about the member functions of shared_ptr, not the member functions of your class. Copies of shared_ptr objects are different objects.
I believe the code is thread safe, because the only changing variable written and read on different threads is cur, and that variable is atomic.
If cur was not atomic and access to it in both Increase() and IsOverMax() was protected by locking a std::mutex, that code would also be thread safe.

create threaded class functions with arguments inside class

I have an object of class AI, which has a private non static void function which has a lot of arguments: minmax(double& val,double alpha, double beta, unsigned short depth, board* thisTurn); because this is a very time intensive function I want to use a number of threads to run it concurrently, therefor I must create a thread with this function inside another function inside the AI class;
According toThis question to make threads inside member functions containing non static member functions wiht no arguments of said class, one must call:
std::thread t(&myclass::myfunc,this);
And according to this tutorial threads of fucntions with multiple arguments can be created as such:
std::thread t(foo,4,5)
where the function 'foo' has 2 integer arguments
However I desire to mix these to things, to call a function which has arguments, which is also a non static member function, from inside the class that it is a member of, and i am not sure how to mix these to things.
I have off course tried (remember that it is inside a function inside the AI class):
std::thread t(&AI::minmax,val,alpha,beta,depth,thisTurn,this);
and
std::thread t(&AI::minmax,this,val,alpha,beta,depth,thisTurn);
But both cases fails with a compile error like this:
error: no matching constructor for initialization of 'std::thread'
candidate constructor template not viable: requires single argument '__f', but
7 arguments were provided
My question is therefor, if or if not, it is even possiple to -- from inside a member function of a class -- call a non static member function which has several arguments as a thread, and if this is the case, how it is done.
This question is however not wether or not it is a good idea to use multithreading in my specific case.
Edit
After doing some testing i realized that i can not call functions with arguments as threads at all, not even non-member functions with only one argument called directly from main, this was however solved by asking this other question where i realized that i simply need to add the flag -std=c++11 (because apparantly macs don't always use all c++11 features as standard) after doing so the answer works fine.
You need to wrap references using std::ref. The following example compiles fine:
#include <iostream>
#include <thread>
class board;
class AI
{
public:
void minmax(double& val, double alpha, double beta, unsigned short depth, board* thisTurn)
{
std::cout << "minmax" << std::endl;
}
void spawnThread()
{
double val;
double alpha;
double beta;
unsigned short depth;
board* thisTurn;
std::thread t(&AI::minmax, this, std::ref(val), alpha, beta, depth, thisTurn);
t.join();
}
};
int main()
{
AI ai;
ai.spawnThread();
}

Threads with same argument objects give different values

I have a problem where two threads with different functions and same argument objects result in giving different values for those objects.
To clearify, please observe the following code:
class Player(){
// Definition of Player here
// with get- and set functions
// for a certain value.
}
class Game(){
static void Draw(Player p){
while(1){
gotoxy(p.getValue(), 15);
cout << p.name();
}
}
static void Move(Player p){
int x = p.getValue();
while(1){
if(_kbhit()){
p.setValue(++x);
}
}
}
void startGame(){
Player pl1(5);
thread thd1(Move, pl1);
thread thd2(Draw, pl1);
thd1.join();
thd2.join();
}
}
While the value 'x' is changing in the function 'Move' for every key stroke, when getting that value in function 'Draw' still has the initial value for 'pl1' (which is 5).
How can I get 'Draw' to aquire the same value that 'Move' has given?
I appreciate any help and guidance.
Thank you in advance!
You are passing the player by value
static void Move(Player pl)
rather than by reference/pointer, so both functions have their own, local, copies of the original variable.
static void Move(Player& pl)
will take the variable by reference and give both functions access to the original variable.
Also, unless getValue and setValue implement some form of locking, this code is not thread safe.
The problem is that you are passing pl1 by value, when you want to be passing it by reference. Even though it looks like you are passing pl1 into each function, what's really going on is that the Move and Draw threads are each constructing new Player objects. If you pass by references, then both threads will refer to the same object as opposed to creating their own copies. Try changing the signatures of the functions to the following:
static void Move(Player &p);
static void Draw(Player &p);
Also, consider putting some exit condition into your function. Since while(1) will never exit, the join() functions will wait forever. Hope that helps!

Threading and un-safe variables

I have code listed here: Threading and Sockets.
The answer to that question was to modify isListening with volatile. As I remarked, that modifier allowed me to access the variable from another thread. After reading MSDN, I realized that I was reading isListening from the following newly created thread process.
So, my questions now:
Is volatile the preferred method,since I am basically making a non-thread safe request on a variable? I have read about the Interlocked class and wondered if this was something that would be better to use in my code. Interlocked looks similar to what lock(myObj) is doing - but with a little more 'flair' and control. I do know that simply applying a lock(myObj) code block around isListening did not work.
Should I implement the Interlocked class?
Thank you for your time and responses.
If all you are doing is reading and writing a variable across multiple threads in C#, then you do not have to worry about synchronizing access to (locking) that variable providing its type is bool, char, byte, sbyte, short, ushort, int, uint, float, and reference types. See here for details.
In the example from your other post, the reason you have to mark the field as volatile is to ensure that it is not subject to compiler optimizations and that the most current value is present in the field at all times. See here for details on the volatile keyword. Doing this allows that field to be read and written across threads without having to lock (synchronize access to) it. But keep in mind, the volatile keyword can only be used for your field because it is of type bool. Had it been a double, for example, the volatile keyword wouldn't work, and you'd have to use a lock.
The Interlocked class is used for a specialized purpose, namely incrementing, decrementing, and exchanging values of (typically) numeric types. These operations are not atomic. For example, if you are incrementing a value in one thread and trying to read the resulting value in another thread, you would normally have to lock the variable to prevent reading intermediate results. The Interlocked class simply provides some convenience functions so you don't have to lock the variable yourself while the increment operation is performed.
What you are doing with the isListening flag does not require use of the Interlocked class. Marking the field as volatile is sufficient.
Edit due to lunchtime rushed answer..
The lock statement used in your previous code is locking an object instance that is created in the scope of a method so it will have no effect on another thread calling into the same method. Each thread must be able to lock the same instance of an object in order to synchronise access to the given block of code. One way to do this (depending on the semantics you require) is to make the locking object a private static variable of the class that it is used in. This will allow multiple instances of a given object to synchronise access to a block of code or a single shared resource. If synchronisation is required for individual instances of an object or a resource that is instance specific then static should be emitted.
Volatile doesn't guarantee that reads or writes to the given variable will be atomic amongst different threads. It is a compiler hint to preserve ordering of instructions and prevents the variable from being cached inside a register. In general unless you are working on something extremely performance sensitive (low locking / lock free algorithms, data structures etc.) or really know you are doing then I would opt for using Interlocked. The performance difference between using volatile / interlocked / lock in most applications will be neglible, so if you are unsure its best to use what ever gives you the safest guarantee (read Joe Duffy's blog & book).
For example using volatile in the example below is not thread safe and the incremented counter does not reach 10,000,000 (when I ran the test it reached 8848450) . This is because volatile only guarentees reading the latest value (e.g. not cached from a register for example). When using interlocked the operation is thread safe and the counter does reach 10,000,000.
public class Incrementor
{
private volatile int count;
public int Count
{
get { return count; }
}
public void UnsafeIncrement()
{
count++;
}
public void SafeIncrement()
{
Interlocked.Increment(ref count);
}
}
[TestFixture]
public class ThreadingTest
{
private const int fiveMillion = 5000000;
private const int tenMillion = 10000000;
[Test]
public void UnsafeCountShouldNotCountToTenMillion()
{
const int iterations = fiveMillion;
Incrementor incrementor = new Incrementor();
Thread thread1 = new Thread(() => UnsafeIncrement(incrementor, iterations));
Thread thread2 = new Thread(() => UnsafeIncrement(incrementor, iterations));
thread1.Start();
thread2.Start();
thread1.Join();
thread2.Join();
Assert.AreEqual(tenMillion, incrementor.Count);
}
[Test]
public void SafeIncrementShouldCountToTenMillion()
{
const int iterations = fiveMillion;
Incrementor incrementor = new Incrementor();
Thread thread1 = new Thread(() => SafeIncrement(incrementor, iterations));
Thread thread2 = new Thread(() => SafeIncrement(incrementor, iterations));
thread1.Start();
thread2.Start();
thread1.Join();
thread2.Join();
Assert.AreEqual(tenMillion, incrementor.Count);
}
private void UnsafeIncrement(Incrementor incrementor, int times)
{
for (int i =0; i < times; ++i)
incrementor.UnsafeIncrement();
}
private void SafeIncrement(Incrementor incrementor, int times)
{
for (int i = 0; i < times; ++i)
incrementor.SafeIncrement();
}
}
If you search for 'interlocked volatile' you will find a number of answers to your question. The one below for example addresses your question:
A simple example below shows
Volatile vs. Interlocked vs. lock
"One way to do this is to make the locking object a private static variable of the class that it is used in."
Why should it be static? You can access the same function from multiple threads as long as they work on different object. I am not saying that it would not work, but would seriously slow the speed of the application without any advantages. Or am I missing something?
And here is what MSDN says about volatiles:
"Also, when optimizing, the compiler must maintain ordering among references to volatile objects as well as references to other global objects. In particular,
A write to a volatile object (volatile write) has Release semantics; a reference to a global or static object that occurs before a write to a volatile object in the instruction sequence will occur before that volatile write in the compiled binary.
A read of a volatile object (volatile read) has Acquire semantics; a reference to a global or static object that occurs after a read of volatile memory in the instruction sequence will occur after that volatile read in the compiled binary.
This allows volatile objects to be used for memory locks and releases in multithreaded applications."

MFC multithreading with delete[] , dbgheap.c

I've got a strange problem and really don't understand what's going on.
I made my application multi-threaded using the MFC multithreadclasses.
Everything works well so far, but now:
Somewhere in the beginning of the code I create the threads:
m_bucketCreator = new BucketCreator(128,128,32);
CEvent* updateEvent = new CEvent(FALSE, FALSE);
CWinThread** threads = new CWinThread*[numThreads];
for(int i=0; i<8; i++){
threads[i]=AfxBeginThread(&MyClass::threadfunction, updateEvent);
m_activeRenderThreads++;
}
this creates 8 threads working on this function:
UINT MyClass::threadfunction( LPVOID params ) //executed in new Thread
{
Bucket* bucket=m_bucketCreator.getNextBucket();
...do something with bucket...
delete bucket;
}
m_bucketCreator is a static member. Now I get some thread error in the deconstructor of Bucket on the attempt to delete a buffer (however, the way I understand it this buffer should be in the memory of this thread, so I don't get why there is an error). On the attempt of delete[] buffer, the error happens in _CrtIsValidHeapPointer() in dbgheap.c.
Visual studio outputs the message that it trapped a halting point and this can be either due to heap corruption or because the user pressed f12 (I didn't ;) )
class BucketCreator {
public:
BucketCreator();
~BucketCreator(void);
void init(int resX, int resY, int bucketSize);
Bucket* getNextBucket(){
Bucket* bucket=NULL;
//enter critical section
CSingleLock singleLock(&m_criticalSection);
singleLock.Lock();
int height = min(m_resolutionY-m_nextY,m_bucketSize);
int width = min(m_resolutionX-m_nextX,m_bucketSize);
bucket = new Bucket(width, height);
//leave critical section
singleLock.Unlock();
return bucket;
}
private:
int m_resolutionX;
int m_resolutionY;
int m_bucketSize;
int m_nextX;
int m_nextY;
//multithreading:
CCriticalSection m_criticalSection;
};
and class Bucket:
class Bucket : public CObject{
DECLARE_DYNAMIC(RenderBucket)
public:
Bucket(int a_resX, int a_resY){
resX = a_resX;
resY = a_resY;
buffer = new float[3 * resX * resY];
int buffersize = 3*resX * resY;
for (int i=0; i<buffersize; i++){
buffer[i] = 0;
}
}
~Bucket(void){
delete[] buffer;
buffer=NULL;
}
int getResX(){return resX;}
int getResY(){return resY;}
float* getBuffer(){return buffer;}
private:
int resX;
int resY;
float* buffer;
Bucket& operator = (const Bucket& other) { /*..*/}
Bucket(const Bucket& other) {/*..*/}
};
Can anyone tell me what could be the problem here?
edit: this is the other static function I'm calling from the threads. Is this safe to do?
static std::vector<Vector3> generate_poisson(double width, double height, double min_dist, int k, std::vector<std::vector<Vector3> > existingPoints)
{
CSingleLock singleLock(&m_criticalSection);
singleLock.Lock();
std::vector<Vector3> samplePoints = std::vector<Vector3>();
...fill the vector...
singleLock.Unlock();
return samplePoints;
}
All the previous replies are sound. For the copy constructor, make sure that it doesn't just copy the buffer pointer, otherwise that will cause the problem. It needs to allocate a new buffer, not the pointer value, which would cause an error in 'delete'. But I don't get the impression that the copy contructor will get called in your code.
I've looked at the code and I am not seeing any error in it as is. Note that the thread synchronization isn't even necessary in this GetNextBucket code, since it's returning a local variable and those are pre-thread.
Errors in ValidateHeapPointer occur because something has corrupted the heap, which happens when a pointer writes past a block of memory. Often it's a for() loop that goes too far, a buffer that wasn't allocated large enough, etc.
The error is reported during a call to 'delete' because that's when the heap is validated for bugs in debug mode. However, the error has occurred before that time, it just happens that the heap is checked only in 'new' and 'delete'. Also, it isn't necessarily related to the 'Bucket' class.
What you need to need to find this bug, short of using tools like BoundsChecker or HeapValidator, is comment out sections of your code until it goes away, and then you'll find the offending code.
There is another method to narrow down the problem. In debug mode, include in your code, and sprinkle calls to _CrtCheckMemory() at various points of interest. That will generate the error when the heap is corrupted. Simply move the calls in your code to narrow down at what point the corruption begins to occur.
I don't know which version of Visual C++ you are using. If you're using a earlier one like VC++ 6.0, make sure that you are using the Multitreaded DLL version of the C Run Time Library in the compiler option.
You're constructing a RenderBucket. Are you sure you're calling the 'Bucket' class's constructor from there? It should look like this:
class RenderBucket : public Bucket {
RenderBucket( int a_resX, int a_resY )
: Bucket( a_resX, a_resY )
{
}
}
Initializers in the Bucket class to set the buffer to NULL is a good idea... Also making the Default constructor and copy constructor private will help to make double sure those aren't being used. Remember.. the compiler will create these automatically if you don't:
Bucket(); <-- default constructor
Bucket( int a_resx = 0, int a_resy = 0 ) <-- Another way to make your default constructor
Bucket(const class Bucket &B) <-- copy constructor
You haven't made a private copy constructor, or any default constructor. If class Bucket is constructed via one of these implicitly-defined methods, buffer will either be uninitialized, or it will be a copied pointer made by a copy constructor.
The copy constructor for class Bucket is Bucket(const Bucket &B) -- if you do not explicitly declare a copy constructor, the compiler will generate a "naive" copy constructor for you.
In particular, if this object is assigned, returned, or otherwise copied, the copy constructor will copy the pointer to a new object. Eventually, both objects' destructors will attempt to delete[] the same pointer and the second attempt will be a double deletion, a type of heap corruption.
I recommend you make class Bucket's copy constructor private, which will cause attempted copy construction to generate a compile error. As an alternative, you could implement a copy constructor which allocates new space for the copied buffer.
Exactly the same applies to the assignment operator, operator=.
The need for a copy constructor is one of the 55 tips in Scott Meyer's excellent book, Effective C++: 55 Specific Ways to Improve Your Programs and Designs:
This book should be required reading for all C++ programmers.
If you add:
class Bucket {
/* Existing code as-is ... */
private:
Bucket() { buffer = NULL; } // No default construction
Bucket(const Bucket &B) { ; } // No copy construction
Bucket& operator= (const Bucket &B) {;} // No assignment
}
and re-compile, you are likely to find your problem.
There is also another possibility: If your code contains other uses of new and delete, then it is possible these other uses of allocated memory are corrupting the linked-list structure which defines the heap memory. It is common to detect this corruption during a call to delete, because delete must utilize these data structures.

Resources