Imagine you have a 2D polygon (a 2D closed polygonal chain to be more precise). How do you check if it contains self-intersections? It can be convex or concave, oriented clockwise or counter-clockwise.
Now, I could just run a standard O(N log N) algorithm to check if any two segments cross. But I believe that because we have some additional structure -- the order of the segments and the fact that each two consecutive segments meet at endpoints -- a simpler and faster (maybe O(N)?) algorithm could be devised.
Any ideas?
Do you need just to check for self-intersections, or find all of them? The latter is harder than O(N log N), as you can have O(n^2) intersections with n segments.
If you only need to find out if self-intersections exist, or find a small amount of them, then look here. This paper seems to claim just what you need, particularly in the polygon planarization section. I doubt implementing the algorithm described there would be simple, or worthwhile for any problem of reasonable size. But such an algorithm does exist. Disclaimer: I haven't tried to work through the paper and understand it.
Related
Say I had a point cloud with n number of points in 3d space(relatively densely packed together). What is the most efficient way to create a surface that goes contains every single point in it and lets me calculate values such as the normal and curvature at some point on the surface that was created? I also need to be able to create this surface as fast as possible(a few milliseconds hopefully working with python) and it can be assumed that n < 1000.
There is no "most efficient and effective" way (this is true of any problem in any domain).
In the first place, the surface you have in mind is not mathematically defined uniquely.
A possible approach is by means of the so-called Alpha-shapes, implemented either from a Delaunay tetrahedrization, or by the ball-pivoting method. For other methods, lookup "mesh reconstruction" or "surface reconstruction".
On another hand, normals and curvature can be computed locally, from neighbors configurations, without reconstructing a surface (though there is an ambiguity on the orientation of the normals).
I could suggest Nina Amenta's Power Crust algorithm (link to code), or also meshlab suite, which can compute the curvatures too.
I am looking for an algorithm that given two meshes could clip one using another.
The simplest form of this is clipping a mesh using a plane. I've already implemented that by following something similar to what is described here.
What it does is basically inspecting all mesh vertices and triangles with respect to the plane (the plane's normal and point are given). If the triangle is completely above the plane, it is left untouched. If it falls completely below the plane, it is discarded. If some of the edges of the triangle intersect with the plane, the intersecting points with the plane are calculated and added as the new vertices. Finally a cap is generated for the hole on the place the mesh was cut.
The problem is that the algorithm assumes that the plane is unlimited, therefore whatever is in its path is clipped. In the simplest form, I need an extension of this without the assumption of a plane of "infinite" size.
To clarify, imagine that we have a 3D model of a desk with 2 boxes on it. The boxes are adjacent (but not touching or stacked). The user will define a cutting plane of a limited width and height underneath the first box and performs the cut. We end up with a desk model (mesh) with a box on it and another box (mesh) that can be freely moved around/manipulated.
In the general form, I'd like the user to be able to define a bounding box for the box he/she wants to separate from the desk model and perform the cut using that bounding box.
If I could extend the algorithm I already have to an algorithm with limited-sized planes, that would be great for now.
What you're looking for are constructive solid geometry/boolean algorithms with arbitrary meshes. It's considerably more complex than slicing meshes by an infinite plane.
Among the earliest and simplest research in this area, and a good starting point, is Constructive Solid Geometry for Polyhedral Objects by Trumbore and Hughes.
http://cs.brown.edu/~jfh/papers/Laidlaw-CSG-1986/main.htm
From the original paper:
More elaborate solutions extend upon this subject with a variety of data structures.
The real complexity of the operation lies in the slicing algorithm to slice one triangle against another. The nightmare of implementing robust CSG lies in numerical precision. It's easy when you involve objects far more complex than a cube to run into cases where a slice is made just barely next to a vertex (at which point you have the tough decision of merging the new split vertex or not prior to carrying out more splits), where polygons are coplanar (or almost), etc.
So I suggest initially erring on the side of using very high-precision floating point numbers, possibly even higher than double precision to focus on getting something working correctly and robustly. You can optimize later (first pass should be to use an accelerator like an octree/kd-tree/bvh), but you'll avoid many headaches this way in your first iteration.
This is vastly simpler to implement at render time if you're focusing on a raytracer rather than a modeling software, e.g. With raytracers, all you have to do to do this kind of arbitrary clipping is pretend that an object used to subtract from another has its polygons flipped in the culling process, e.g. It's easy to solve robustly at the ray level, but quite a bit harder to do robustly at the geometric level.
Another thing you can do to make your life so much easier if you can afford it is to voxelize your object, find subtractions/additions/unions of voxels, and then translate the voxels back into a mesh. This is so much easier to make robust, but harder to do efficiently and the voxel->polygon conversion can get quite involved if you want better results than what marching cubes provide.
It's a really tough area to do extremely well and requires perseverance, and thus the reason for the existence of things like this: http://carve-csg.com/about.
If someone is interested, currently there is a solution for this problem in CGAL library. It allows clipping one triangular mesh using another mesh as bounding volume. The usage example can be found here.
So I'm working on simulating a large number of n-dimensional particles, and I need to know the distance between every pair of points. Allowing for some error, and given the distance isn't relevant at all if exceeds some threshold, are there any good ways to accomplish this? I'm pretty sure if I want dist(A,C) and already know dist(A,B) and dist(B,C) I can bound it by [dist(A,B)-dist(B,C) , dist(A,B)+dist(B,C)], and then store the results in a sorted array, but I'd like to not reinvent the wheel if there's something better.
I don't think the number of dimensions should greatly affect the logic, but maybe for some solutions it will. Thanks in advance.
If the problem was simply about calculating the distances between all pairs, then it would be a O(n^2) problem without any chance for a better solution. However, you are saying that if the distance is greater than some threshold D, then you are not interested in it. This opens the opportunities for a better algorithm.
For example, in 2D case you can use the sweep-line technique. Sort your points lexicographically, first by y then by x. Then sweep the plane with a stripe of width D, bottom to top. As that stripe moves across the plane new points will enter the stripe through its top edge and exit it through its bottom edge. Active points (i.e. points currently inside the stripe) should be kept in some incrementally modifiable linear data structure sorted by their x coordinate.
Now, every time a new point enters the stripe, you have to check the currently active points to the left and to the right no farther than D (measured along the x axis). That's all.
The purpose of this algorithm (as it is typically the case with sweep-line approach) is to push the practical complexity away from O(n^2) and towards O(m), where m is the number of interactions we are actually interested in. Of course, the worst case performance will be O(n^2).
The above applies to 2-dimensional case. For n-dimensional case I'd say you'll be better off with a different technique. Some sort of space partitioning should work well here, i.e. to exploit the fact that if the distance between partitions is known to be greater than D, then there's no reason to consider the specific points in these partitions against each other.
If the distance beyond a certain threshold is not relevant, and this threshold is not too large, there are common techniques to make this more efficient: limit the search for neighbouring points using space-partitioning data structures. Possible options are:
Binning.
Trees: quadtrees(2d), kd-trees.
Binning with spatial hashing.
Also, since the distance from point A to point B is the same as distance from point B to point A, this distance should only be computed once. Thus, you should use the following loop:
for point i from 0 to n-1:
for point j from i+1 to n:
distance(point i, point j)
Combining these two techniques is very common for n-body simulation for example, where you have particles affect each other if they are close enough. Here are some fun examples of that in 2d: http://forum.openframeworks.cc/index.php?topic=2860.0
Here's a explanation of binning (and hashing): http://www.cs.cornell.edu/~bindel/class/cs5220-f11/notes/spatial.pdf
I have n points in R^3 that I want to cover with k ellipsoids or cylinders (I don't really care; whichever is easier). I want to approximately minimize the union of the volumes. Let's say n is tens of thousands and k is a handful. Development time (i.e. simplicity) is more important than runtime.
Obviously I can run k-means and use perfect balls for my ellipsoids. Or I can run k-means, then use minimum enclosing ellipsoids per cluster rather than covering with balls, though in the worst case that's no better. I've seen talk of handling anisotropy with k-means but the links I saw seemed to think I had a tensor in hand; I don't, I just know the data will be a union of ellipsoids. Any suggestions?
[Edit: There's a couple votes for fitting a mixture of multivariate Gaussians, which seems like a viable thing to try. Firing up an EM code to do that won't minimize the volume of the union, but of course k-means doesn't minimize volume either.]
So you likely know k-means is NP-hard, and this problem is even more general (harder). Because you want to do ellipsoids it might make a lot of sense to fit a mixture of k multivariate gaussian distributions. You would probably want to try and find a maximum likelihood solution, which is a non-convex optimization, but at least it's easy to formulate and there is likely code available.
Other than that you're likely to have to write your own heuristic search algorithm from scratch, this is just a huge undertaking.
I did something similar with multi-variate gaussians using this method. The authors use kurtosis as the split measure, and I found it to be a satisfactory method for my application, clustering points obtained from a laser range finder (i.e. computer vision).
If the ellipsoids can overlap a lot,
then methods like k-means that try to assign points to single clusters
won't work very well.
Part of each ellipsoid has to fit the surface of your object,
but the rest may be inside it, don't-cares.
That is, covering algorithms
seem to me quite different from clustering / splitting algorithms;
unions are not splits.
Gaussian mixtures with lots of overlaps ?
No idea, but see the picture and code on Numerical Recipes p. 845.
Coverings are hard even in 2d, see
find-near-minimal-covering-set-of-discs-on-a-2-d-plane.
A naive approach is to find, for each edge in the polygon, the point on that edge closest to the given point, and then take the one that's closest. Is there a faster algorithm? My goal is to implement a 2D Super Mario Galaxy-style platformer.
Apparently this can be done with Voronoi regions, as in this video: http://www.youtube.com/watch?v=Ldh2YKobuWo
However, I can't find any Voronoi algorithms that deal with edges as well as points. Ideas?
Calculate the point-line distance for each of the edges, then pick the shortest one. There is no shortcut. This site has a good explanation and even implementations in various languages.
However, finding "the point on that edge closest to the given point" is a computationally unnecessary intermediate result.
If the polygon is convex, then the overhead of the voronoi calculation far exceeds that of the naive approach.
If this is run many times, and each time the point changes slightly, you only need to check 3 segments (think about it: as you move around, assuming many checks, then the closest edge will only change to an adjacent edge)