Loss does not decrease - pytorch

I'm a beginner and just trying to get in pytorch and neural networks. Therefore I created some dataset. The dataset consists of two input variables and one output variable (basicly the output is a linear function with some noise). Now I want to set up a neural network and train it with the dataset. I followed some tutorial and wrote this code:
df = pd.read_csv(r" ... .csv")
X = df[["x", "y"]]
y = df[["goal"]]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42)
X_train, y_train = np.array(X_train), np.array(y_train)
X_test, y_test = np.array(X_test), np.array(y_test)
# Convert data to torch tensors
class Data(Dataset):
def __init__(self, X, y):
self.X = torch.from_numpy(X.astype(np.float32))
self.y = torch.from_numpy(y.astype(np.float32))
self.len = self.X.shape[0]
def __getitem__(self, index):
return self.X[index], self.y[index]
def __len__(self):
return self.len
batch_size = 32
# Instantiate training and test data
train_data = Data(X_train, y_train)
train_dataloader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True)
test_data = Data(X_test, y_test)
test_dataloader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=True)
input_dim = 2
hidden_dim_1 = 2
output_dim = 1
class NeuralNetwork(nn.Module):
def __init__(self, input_dim, hidden_dim_1, output_dim):
super(NeuralNetwork, self).__init__()
self.layer_1 = nn.Linear(input_dim, hidden_dim_1)
self.layer_out = nn.Linear(hidden_dim_1, output_dim)
def forward(self, x):
x = F.relu(self.layer_1(x))
x = self.layer_out(x)
return x
model = NeuralNetwork(input_dim, hidden_dim_1, output_dim)
optimizer = optim.SGD(model.parameters(), lr=0.01)
def train(epoch):
model.train()
for batch_id, (data, target) in enumerate(train_data):
data = Variable(data)
target = Variable(target)
target = target.to(dtype=torch.float32)
optimizer.zero_grad()
out = model(data)
criterion = F.mse_loss
loss = criterion(out, target)
print(loss.detach().numpy())
loss.backward()
optimizer.step()
for epoch in range(1, 30):
train(epoch)
My problem is that the printed loss is extremly high (e8-area) and does not decrease.
I tried to change some settings of the neural network, changed the batchsize, learningrate and tried other optimizers and loss functions. But none of the changes really helped. My research also didn't bring any success. Seems to me that there is a more basic mistake in my coding. What did I wrong?
Thanks in advance!

Your code seems fine to me (although I might miss a bug). It is in general never safe to say which networks will be successful and which won't, but here are some suggestions if you can't see any progress:
Check the input data. Maybe try plotting it to make sure that it actually contains what you think it does. You may print out the inputs, predicted and expected values (or better, view them in a debugger) to see what's wrong.
Normalize the input data. If there are high values in the input / output data, losses may explode. Ensure that most of the values are roughly between -1 and 1.
Lower the learning rate. 0.01 is generally a good starting point, but who knows.
Try training for more epochs. Depending on the noise in your data, this could be necessary.
Try adding more neurons. A linear function should in theory be fine with not that many, but maybe the noise is too 'complex'.

Related

What should I think about when writing a custom loss function?

I'm trying to get my toy network to learn a sine wave.
I output (via tanh) a number between -1 and 1, and I want the network to minimise the following loss, where self(x) are the predictions.
loss = -torch.mean(self(x)*y)
This should be equivalent to trading a stock with a sinusoidal price, where self(x) is our desired position, and y are the returns of the next time step.
The issue I'm having is that the network doesn't learn anything. It does work if I change the loss function to be torch.mean((self(x)-y)**2) (MSE), but this isn't what I want. I'm trying to focus the network on 'making a profit', not making a prediction.
I think the issue may be related to the convexity of the loss function, but I'm not sure, and I'm not certain how to proceed. I've experimented with differing learning rates, but alas nothing works.
What should I be thinking about?
Actual code:
%load_ext tensorboard
import matplotlib.pyplot as plt; plt.rcParams["figure.figsize"] = (30,8)
import torch;from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F;import pytorch_lightning as pl
from torch import nn, tensor
def piecewise(x): return 2*(x>0)-1
class TsDs(torch.utils.data.Dataset):
def __init__(self, s, l=5): super().__init__();self.l,self.s=l,s
def __len__(self): return self.s.shape[0] - 1 - self.l
def __getitem__(self, i): return self.s[i:i+self.l], torch.log(self.s[i+self.l+1]/self.s[i+self.l])
def plt(self): plt.plot(self.s)
class TsDm(pl.LightningDataModule):
def __init__(self, length=5000, batch_size=1000): super().__init__();self.batch_size=batch_size;self.s = torch.sin(torch.arange(length)*0.2) + 5 + 0*torch.rand(length)
def train_dataloader(self): return DataLoader(TsDs(self.s[:3999]), batch_size=self.batch_size, shuffle=True)
def val_dataloader(self): return DataLoader(TsDs(self.s[4000:]), batch_size=self.batch_size)
dm = TsDm()
class MyModel(pl.LightningModule):
def __init__(self, learning_rate=0.01):
super().__init__();self.learning_rate = learning_rate
super().__init__();self.learning_rate = learning_rate
self.conv1 = nn.Conv1d(1,5,2)
self.lin1 = nn.Linear(20,3);self.lin2 = nn.Linear(3,1)
# self.network = nn.Sequential(nn.Conv1d(1,5,2),nn.ReLU(),nn.Linear(20,3),nn.ReLU(),nn.Linear(3,1), nn.Tanh())
# self.network = nn.Sequential(nn.Linear(5,5),nn.ReLU(),nn.Linear(5,3),nn.ReLU(),nn.Linear(3,1), nn.Tanh())
def forward(self, x):
out = x.unsqueeze(1)
out = self.conv1(out)
out = out.reshape(-1,20)
out = nn.ReLU()(out)
out = self.lin1(out)
out = nn.ReLU()(out)
out = self.lin2(out)
return nn.Tanh()(out)
def step(self, batch, batch_idx, stage):
x, y = batch
loss = -torch.mean(self(x)*y)
# loss = torch.mean((self(x)-y)**2)
print(loss)
self.log("loss", loss, prog_bar=True)
return loss
def training_step(self, batch, batch_idx): return self.step(batch, batch_idx, "train")
def validation_step(self, batch, batch_idx): return self.step(batch, batch_idx, "val")
def configure_optimizers(self): return torch.optim.SGD(self.parameters(), lr=self.learning_rate)
#logger = pl.loggers.TensorBoardLogger(save_dir="/content/")
mm = MyModel(0.1);trainer = pl.Trainer(max_epochs=10)
# trainer.tune(mm, dm)
trainer.fit(mm, datamodule=dm)
#
If I understand you correctly, I think that you were trying to maximize the unnormalized correlation between the network's prediction, self(x), and the target value y.
As you mention, the problem is the convexity of the loss wrt the model weights. One way to see the problem is to consider that the model is a simple linear predictor w'*x, where w is the model weights, w' it's transpose, and x the input feature vector (assume a scalar prediction for now). Then, if you look at the derivative of the loss wrt the weight vector (i.e., the gradient), you'll find that it no longer depends on w!
One way to fix this is change the loss to,
loss = -torch.mean(torch.square(self(x)*y))
or
loss = -torch.mean(torch.abs(self(x)*y))
You will have another big problem, however: these loss functions encourage unbound growth of the model weights. In the linear case, one solves this by a Lagrangian relaxation of a hard constraint on, for example, the norm of the model weight vector. I'm not sure how this would be done with neural networks as each layer would need it's own Lagrangian parameter...

How to check accuracy on BCELoss Pytorch?

I'm trying to use Pytorch to take a HeartDisease.csv and predict whether the patient has heart disease or not... the .csv provides 13 inputs and 1 target
I'm using BCELoss and I'm having trouble understanding how to write an accuracy check function.
My num_samples is correct but not my num_correct. I think this is a result of not understanding the predictions tensor. Right now my num_correct is usually over 8000 while my num_samples is 303...
Any insight on how to write this check accuracy function is much appreciated
I wrote this on a google co lab
#imports
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import pandas as pd
#create fully connected network
class NN(nn.Module):
def __init__(self, input_size, num_classes):
super(NN, self).__init__()
self.outputs = nn.Linear(input_size, 1)
def forward(self, x):
x = self.outputs(x)
return torch.sigmoid(x)
#set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#hyperparameters
input_size = 13 # 13 inputs
num_classes = 1 # heartdisease or not
learning_rate = 0.001
batch_size = 64
num_epochs = 1
#load data
class MyDataset(Dataset):
def __init__(self, root, n_inp):
self.df = pd.read_csv(root)
self.data = self.df.to_numpy()
self.x , self.y = (torch.from_numpy(self.data[:,:n_inp]),
torch.from_numpy(self.data[:,n_inp:]))
def __getitem__(self, idx):
return self.x[idx, :], self.y[idx,:]
def __len__(self):
return len(self.data)
train_dataset = MyDataset("heart.csv", input_size)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle =True)
test_dataset = MyDataset("heart.csv", input_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle =True)
#initialize network
model = NN(input_size=input_size, num_classes=num_classes).to(device)
#loss and optimizer
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
#train network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
#get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
#forward
scores = model(data.float())
targets = targets.float()
loss = criterion(scores, targets)
#backward
optimizer.zero_grad()
loss.backward()
#grad descent or adam step
optimizer.step()
#check accuracy of model
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x.float())
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print("Got {} / {} with accuracy {}".format(num_correct, num_samples, float(num_correct)/float(num_samples)*100))
model.train()
print("checking accuracy on training data")
check_accuracy(train_loader, model)
print("checking accuracy on test data")
check_accuracy(test_loader, model)
Note: Don't fool yourself. A single linear layer + a sigmoid + BCE loss = logistic regression. This is a linear model, so just take note of that when referring to it as a "neural network", which is a term usually reserved for similar networks but with at least one hidden layer and nonlinear activations.
The sigmoid layer at the end of your model's forward() function returns an (N,1)-sized tensor, where N is the batch size. In other words, it returns a scalar for every data point. Each scalar is a value between 0 and 1 (this is the range of the sigmoid function).
The idea is to interpret those scalars as probabilities corresponding to the positive class. Suppose 1 corresponds to heart disease, and 0 corresponds to no heart disease; heart disease is the positive class, and no heart disease is the negative class. Now suppose a score is 0.6. This might be interpreted as a 60% chance that the associated label is heart disease, and a 40% chance that the associated label is no heart disease. This interpretation of the sigmoid output is what motivates the BCE loss to begin with (it's ultimately just a negative log likelihood).
So what you might do is check if your scores are greater than 0.5. If so, predict heart disease. If not, predict no heart disease.
Right now, you're computing maximums from the scores across dimension 1, which does nothing because dimension 1 is already of size 1; taking the maximum of a single value simply gives you that value.
Try something like this:
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x.float())
// Create a Boolean tensor (True for scores > 0.5, False for others)
// and then cast it to a long tensor (Trues -> 1, Falses -> 0)
predictions = (scores > 0.5).long()
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print("Got {} / {} with accuracy {}".format(num_correct, num_samples, float(num_correct)/float(num_samples)*100))
model.train()
You may also want to squeeze your prediction and target tensors to size (N) instead of (N,1), though I'm not sure it's necessary in your case.

How do you test a custom dataset in Pytorch?

I've been following tutorials in Pytorch that use datasets from Pytorch that allow you to enable whether you'd like to train using the data or not... But now I'm using a .csv and a custom dataset.
class MyDataset(Dataset):
def __init__(self, root, n_inp):
self.df = pd.read_csv(root)
self.data = self.df.to_numpy()
self.x , self.y = (torch.from_numpy(self.data[:,:n_inp]),
torch.from_numpy(self.data[:,n_inp:]))
def __getitem__(self, idx):
return self.x[idx, :], self.y[idx,:]
def __len__(self):
return len(self.data)
How can I tell Pytorch not to train my test_dataset so I can use it as a reference of how accurate my model is?
train_dataset = MyDataset("heart.csv", input_size)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle =True)
test_dataset = MyDataset("heart.csv", input_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle =True)
In pytorch, a custom dataset inherits the class Dataset. Mainly it contains two methods __len__() is to specify the length of your dataset object to iterate over and __getitem__() to return a batch of data at a time.
Once the dataloader objects are initialized (train_loader and test_loader as specified in your code), you need to write a train loop and a test loop.
def train(model, optimizer, loss_fn, dataloader):
model.train()
for i, (input, gt) in enumerate(dataloader):
if params.use_gpu: #(If training using GPU)
input, gt = input.cuda(non_blocking = True), gt.cuda(non_blocking = True)
predicted = model(input)
loss = loss_fn(predicted, gt)
optimizer.zero_grad()
loss.backward()
optimizer.step()
and your test loop should be:
def test(model,loss_fn, dataloader):
model.eval()
for i, (input, gt) in enumerate(dataloader):
if params.use_gpu: #(If training using GPU)
input, gt = input.cuda(non_blocking = True), gt.cuda(non_blocking = True)
predicted = model(input)
loss = loss_fn(predicted, gt)
In additional you can use metrics dictionary to log your predicted, loss, epochs etc,. The main difference between training and test loop is that we exclude back propagation (zero_grad(), backward(), step()) in inference stage.
Finally,
for epoch in range(1, epochs + 1):
train(model, optimizer, loss_fn, train_loader)
test(model, loss_fn, test_loader)
There are a couple of things to note when you're testing in pytorch:
Put your model into evaluation mode so that things like dropout and batch normalization aren't in training mode: model.eval()
Put a wrapper around your testing code to avoid the computation of gradients (saving memory and time): with torch.no_grad():
Normalise or standardise your data according to your training set only. This is important for min/max normalisation or z-score standardisation so that the model accurately reflects test performance.
Other than that, what you've written looks pretty fine to me, as you're not applying any transforms to your data (for example, image flipping or gaussian noise injections). To show what code should look like in test mode, see below:
for e in range(num_epochs):
for B, (dat, label) in enumerate(train_loader):
#transforms here
opt.zero_grad()
out = model(dat.to(device))
loss = criterion(out)
loss.backward()
opt.step()
with torch.no_grad():
model.eval()
global_corr = 0
for B, (dat,label) in enumerate(test_loader):
out = model(dat.to(device))
# get batch eval metrics here!

Visualize the output of Vgg16 model by TSNE plot?

I need to visualize the output of Vgg16 model which classify 14 different classes.
I load the trained model and I did replace the classifier layer with the identity() layer but it doesn't categorize the output.
Here is the snippet:
the number of samples here is 1000 images.
epoch = 800
PATH = 'vgg16_epoch{}.pth'.format(epoch)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
model.classifier._modules['6'] = Identity()
model.eval()
logits_list = numpy.empty((0,4096))
targets = []
with torch.no_grad():
for step, (t_image, target, classess, image_path) in enumerate(test_loader):
t_image = t_image.cuda()
target = target.cuda()
target = target.data.cpu().numpy()
targets.append(target)
logits = model(t_image)
print(logits.shape)
logits = logits.data.cpu().numpy()
print(logits.shape)
logits_list = numpy.append(logits_list, logits, axis=0)
print(logits_list.shape)
tsne = TSNE(n_components=2, verbose=1, perplexity=10, n_iter=1000)
tsne_results = tsne.fit_transform(logits_list)
target_ids = range(len(targets))
plt.scatter(tsne_results[:,0],tsne_results[:,1],c = target_ids ,cmap=plt.cm.get_cmap("jet", 14))
plt.colorbar(ticks=range(14))
plt.legend()
plt.show()
here is what this script has been produced: I am not sure why I have all colors for each cluster!
The VGG16 outputs over 25k features to the classifier. I believe it's too much to t-SNE. It's a good idea to include a new nn.Linear layer to reduce this number. So, t-SNE may work better. In addition, I'd recommend you two different ways to get the features from the model:
The best way to get it regardless of the model is by using the register_forward_hook method. You may find a notebook here with an example.
If you don't want to use the register, I'd suggest this one. After loading your model, you may use the following class to extract the features:
class FeatNet (nn.Module):
def __init__(self, vgg):
super(FeatNet, self).__init__()
self.features = nn.Sequential(*list(vgg.children())[:-1]))
def forward(self, img):
return self.features(img)
Now, you just need to call FeatNet(img) to get the features.
To include the feature reducer, as I suggested before, you need to retrain your model doing something like:
class FeatNet (nn.Module):
def __init__(self, vgg):
super(FeatNet, self).__init__()
self.features = nn.Sequential(*list(vgg.children())[:-1]))
self.feat_reducer = nn.Sequential(
nn.Linear(25088, 1024),
nn.BatchNorm1d(1024),
nn.ReLU()
)
self.classifier = nn.Linear(1024, 14)
def forward(self, img):
x = self.features(img)
x_r = self.feat_reducer(x)
return self.classifier(x_r)
Then, you can run your model returning x_r, that is, the reduced features. As I told you, 25k features are too much for t-SNE. Another method to reduce this number is by using PCA instead of nn.Linear. In this case, you send the 25k features to PCA and then train t-SNE using the PCA's output. I prefer using nn.Linear, but you need to test to check which one you get a better result.

How to create an autoencoder where each layer of encoder should represent the same as a layer of the decoder

I want to build an autoencoder where each layer in the encoder has the same meaning as a correspondent layer in the decoder. So if the autoencoder is perfectly trained, the values of those layers should be roughly the same.
So lets say the autoencoder consists of e1 -> e2 -> e3 -> d2 -> d1, whereas e1 is the input and d1 the output. A normal autoencoder trains to have the same result in d1 as e1, but I want the additional constraint, that e2 and d2 are the same. Therefore I want an additional backpropagation path which leads from d2 to e2 and trains at the same time as the normal path from d1 to e1. (d stands for decoder, e for encoder).
I tried to use the error between e2 and d2 as a regularization term with the CustomRegularization layer from the first answer of this link https://github.com/keras-team/keras/issues/5563. I also use this for the error between e1 and d1 instead of the normal path.
The following code is written such that more than 1 intermediate layer can be handled and also uses 4 layers.
In the out commented code is a normal autoencoder which only propagates from start to end.
from keras.layers import Dense
import numpy as np
from keras.datasets import mnist
from keras.models import Model
from keras.engine.topology import Layer
from keras import objectives
from keras.layers import Input
import keras
import matplotlib.pyplot as plt
#A layer which can be given as an output to force a regularization term between two layers
class CustomRegularization(Layer):
def __init__(self, **kwargs):
super(CustomRegularization, self).__init__(**kwargs)
def call(self, x, mask=None):
ld=x[0]
rd=x[1]
bce = objectives.binary_crossentropy(ld, rd)
loss2 = keras.backend.sum(bce)
self.add_loss(loss2, x)
return bce
def get_output_shape_for(self, input_shape):
return (input_shape[0][0],1)
def zero_loss(y_true, y_pred):
return keras.backend.zeros_like(y_pred)
#Create regularization layer between two corresponding layers of encoder and decoder
def buildUpDownRegularization(layerNo, input, up_layers, down_layers):
for i in range(0, layerNo):
input = up_layers[i](input)
start = input
for i in range(layerNo, len(up_layers)):
input = up_layers[i](input)
for j in range(0, len(down_layers) - layerNo):
input = down_layers[j](input)
end = input
cr = CustomRegularization()([start, end])
return cr
# Define shape of the network, layers, some hyperparameters and training data
sizes = [784, 400, 200, 100, 50]
up_layers = []
down_layers = []
for i in range(1, len(sizes)):
layer = Dense(units=sizes[i], activation='sigmoid', input_dim=sizes[i-1])
up_layers.append(layer)
for i in range(len(sizes)-2, -1, -1):
layer = Dense(units=sizes[i], activation='sigmoid', input_dim=sizes[i+1])
down_layers.append(layer)
batch_size = 128
num_classes = 10
epochs = 100
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
x_train = x_train.reshape([x_train.shape[0], 28*28])
x_test = x_test.reshape([x_test.shape[0], 28*28])
y_train = x_train
y_test = x_test
optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
"""
### Normal autoencoder like in base mnist example
model = keras.models.Sequential()
for layer in up_layers:
model.add(layer)
for layer in down_layers:
model.add(layer)
model.compile(optimizer=optimizer, loss=keras.backend.binary_crossentropy)
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs)
score = model.evaluate(x_test, y_test, verbose=0)
#print('Test loss:', score[0])
#print('Test accuracy:', score[1])
decoded_imgs = model.predict(x_test)
n = 10 # how many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):
# display original
ax = plt.subplot(2, n, i + 1)
plt.imshow(x_test[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# display reconstruction
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
"""
### My autoencoder where each subpart is also an autoencoder
#This part is only because the model needs a path from start to end, contentwise this should do nothing
output = input = Input(shape=(sizes[0],))
for i in range(0, len(up_layers)):
output = up_layers[i](output)
for i in range(0, len(down_layers)):
output = down_layers[i](output)
crs = [output]
losses = [zero_loss]
#Build the regularization layer
for i in range(len(up_layers)):
crs.append(buildUpDownRegularization(i, input, up_layers, down_layers))
losses.append(zero_loss)
#Create and train model with adapted training data
network = Model([input], crs)
optimizer = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
network.compile(loss=losses, optimizer=optimizer)
dummy_train = np.zeros([y_train.shape[0], 1])
dummy_test = np.zeros([y_test.shape[0], 1])
training_data = [y_train]
test_data = [y_test]
for i in range(len(network.outputs)-1):
training_data.append(dummy_train)
test_data.append(dummy_test)
network.fit(x_train, training_data, batch_size=batch_size, epochs=epochs,verbose=1, validation_data=(x_test, test_data))
score = network.evaluate(x_test, test_data, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
decoded_imgs = network.predict(x_test)
n = 10 # how many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):
# display original
ax = plt.subplot(2, n, i + 1)
plt.imshow(x_test[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# display reconstruction
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(decoded_imgs[0][i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
If you run the code as is it will show, that the reproduction ability is no longer given in my code.
I expect a similar behavior to the uncommented code, which shows a normal autoencoder.
Edit: As mentioned in the answers this works well with MSE instead of crossentropy and a lr of .01. 100 epochs with that setting produce really good results.
Edit 2: I would like that the backpropagation works as in this [image] (https://imgur.com/OOo757x). So the backpropagation of the loss of a certain layer stops at the corresponding layer. I think I didn't make this clear before and I don't know if the code currently does that.
Edit 3: Although this code runs and returns a good looking solution the CustomRegularization layer is not doing what I thought it would do, therefore it does not do the same things as in the description.
It seems like the main issue is the use of binary cross-entropy to minimize the difference between encoder and decoder. The internal representation in the network is not going to be a single class probability like the output might be if you were classifying MNIST digits. I was able to get your network to output some reasonable-looking reconstructions with these simple changes:
Using objectives.mean_squared_error instead of objectives.binary_crossentropy in the CustomRegularization class
Changing number of epochs to 5
Changing learning rate to .01
Changes 2 and 3 were simply made to speed up the testing. Change 1 is the key here. Cross entropy is designed for problems where there is a binary "ground truth" variable and an estimate of that variable. However, you do not have a binary truth value in the middle of your network, only at the output layer. Thus a cross entropy loss function in the middle of the network doesn't make much sense (at least to me) -- it will be trying to measure entropy for a variable that isn't binary. Mean squared error, on the other hand, is a bit more generic and should work for this case since you are simply minimizing the difference between two real values. In essence, the middle of the network is performing regression (difference between activations in two continuous values, i.e. layers), not classification, so it needs a loss function that is appropriate for regression.
I also want to suggest that there may be a better approach to accomplish what you want. If you really want the encoder and decoder to be exactly the same, you can share weights between them. Then they will be identical, not just highly similar, and your model will have fewer parameters to train. There is a decent explanation of shared (tied) weights autoencoders with Keras here if you're curious.
Reading your code it does seem like it is doing what you want in your illustration, but I am not really sure how to verify that.

Resources