I am currently experimenting with openGL, and I'm drawing a lot of circles that I have to break down to triangles (triangulate a circle).
I've been calculating the vertices of the triangles by having an angle that is incremented, and using cos() and sin() to get the x and y values for one vertex.
I searched a bit on the internet about the best and most efficient way of doing this, and even though there's not much information avaliable realized that thin and long triangles (my approach) are not very good. A better approach would be to start with an equilateral triangle and then repeatedly add triangles that cover the larges possible area that's not yet covered.
left - my method; right - new method
I am wondering if this is the most efficient way of doing this, and if yes, how would that be implemented in actual code.
The website where I found the method: link
both triangulations has their pros and cons
The Triangle FAN has equal sized triangles which sometimes looks better with textures (and other interpolated stuff) and the code to generate is simple for loop with parametric circle equation.
The increasing detail mesh has less triangles and can easily support LOD which might be faster. However number of points is not arbitrary (3,6,12,24,48,...). The code is slightly more complicated you could:
start with equilateral triangle remembering circumference edges
so add triangle (p0,p1,p2) to mesh and edges (p0,p1),(p1,p2),(p2,p0) to circumference.
for each edge (p0,p1) of circumference
compute:
p2 = 0.5*(p0+p1); // mid point
p2 = r*p2/|p2|; // normalize it to circle circumference assuming (0,0) is center
add triangle (p0,p1,p2) to mesh and replace p0,p1 edge with (p0,p2),(p2,p1) edges
note that r/|p2| will be the same for all edges in current detail level so no need to compute expensive |p2| over and over again.
goto #2 until you have enough dense triangulation
so 2 for loops and few dynamic lists (points,triangles,circumference_edges,and some temps if not doing this inplace). Also this method does not need goniometrics at all (can be modified to generate the triangle fan too).
Here similar stuff:
sphere triangulation using similar technique
Related
I have two objects: A sphere and an object. Its an object that I created using surface reconstruction - so we do not know the equation of the object. I want to know the intersecting points on the sphere when the object and the sphere intersect. If we had a sphere and a cylinder, we could solve for the equation and figure out the area and all that but the problem here is that the object is not uniform.
Is there a way to find out the intersecting points or area on the sphere?
I'd start by finding the intersection of triangles with the sphere. First find the intersection of each triangle's plane and the sphere, which gives a circle. Then find the circle's intersection/s with the triangle edges in 2D using line/circle tests. The result will be many arcs which I guess you could approximate with lines. I'm not really sure where to go from here without knowing the end goal.
If it's surface area you're after, maybe a numerical approach would be better. I'd cover the sphere in points and count the number inside the non-uniform object. To find if a point is inside, maybe trace outwards and count the intersections with the surface (if it's odd, the point is inside). You could use the stencil buffer for this if you wanted (similar to stencil shadows).
If you want the volume of intersection a quick google search gives "carve", a mesh based CSG library.
Starting with triangles versus the sphere will give you the points of intersection.
You can take the arcs of intersection with each surface and combine them to make fences around the sphere. Ideally your reconstructed object will be in winged-edge format so you could just step from one fence segment to the next, but with reconstructed surfaces I guess you might need to apply some slightly fuzzy logic.
You can determine which side of each fence is inside the reconstructed object and which side is out by factoring in the surface normals along the fence.
You can then cut the sphere along the fences and add the internal bits to the display.
For the other side of things you could remove any triangle completely inside the sphere and cut those that intersect.
I'm using Unity, but the solution should be generic.
I will get user input from mouse clicks, which define the vertex list of a closed irregular polygon.
That vertices will define the outer edges of a flat 3D mesh.
To procedurally generate a mesh in Unity, I have to specify all the vertices and how they are connected to form triangles.
So, for convex polygons it's trivial, I'd just make triangles with vertices 1,2,3 then 1,3,4 etc. forming something like a Peacock tail.
But for concave polygons it's not so simple.
Is there an efficient algorithm to find the internal triangles?
You could make use of a constrained Delaunay triangulation (which is not trivial to implement!). Good library implementations are available within Triangle and CGAL, providing efficient O(n*log(n)) implementations.
If the vertex set is small, the ear-clipping algorithm is also a possibility, although it wont necessarily give you a Delaunay triangulation (it will typically produce sub-optimal triangles) and runs in O(n^2). It is pretty easy to implement yourself though.
Since the input vertices exist on a flat plane in 3d space, you could obtain a 2d problem by projecting onto the plane, computing the triangulation in 2d and then applying the same mesh topology to your 3d vertex set.
I've implemented the ear clipping algorithm as follows:
Iterate over the vertices until a convex vertex, v is found
Check whether any point on the polygon lies within the triangle (v-1,v,v+1). If there are, then you need to partition the polygon along the vertices v, and the point which is farthest away from the line (v-1, v+1). Recursively evaluate both partitions.
If the triangle around vertex v contains no other vertices, add the triangle to your output list and remove vertex v, repeat until done.
Notes:
This is inherently a 2D operation even when working on 3D faces. To consider the problem in 2D, simply ignore the vector coordinate of the face's normal which has the largest absolute value. (This is how you "project" the 3D face into 2D coordinates). For example, if the face had normal (0,1,0), you would ignore the y coordinate and work in the x,z plane.
To determine which vertices are convex, you first need to know the polygon's winding. You can determine this by finding the leftmost (smallest x coordinate) vertex in the polygon (break ties by finding the smallest y). Such a vertex is always convex, so the winding of this vertex gives you the winding of the polygon.
You determine winding and/or convexity with the signed triangle area equation. See: http://softsurfer.com/Archive/algorithm_0101/algorithm_0101.htm. Depending on your polygon's winding, all convex triangles with either have positive area (counterclockwise winding), or negative area (clockwise winding).
The point-in-triangle formula is constructed from the signed-triangle-area formula. See: How to determine if a point is in a 2D triangle?.
In step 2 where you need to determine which vertex (v) is farthest away from the line, you can do so by forming the triangles (L0, v, L1), and checking which one has the largest area (absolute value, unless you're assuming a specific winding direction)
This algorithm is not well defined for self-intersecting polygons, and due to the nature of floating point precision, you will likely encounter such a case. Some safeguards can be implemented for stability: - A point should not be considered to be inside your triangle unless it is a concave point. (Such a case indicates self-intersection and you should not partition your set along this vertex). You may encounter a situation where a partition is entirely concave (i.e. it's wound differently to the original polygon's winding). This partition should be discarded.
Because the algorithm is cyclic and involves partitioning the sets, it is highly efficient to use a bidirectional link list structure with an array for storage. You can then partition the sets in 0(1), however the algorithm still has an average O(n^2) runtime. The best case running time is actually a set where you need to partition many times, as this rapidly reduces the number of comparisons.
There is a community script for triangulating concave polygons but I've not personally used it. The author claims it works on 3D points as well as 2D.
One hack I've used in the past if I want to constrain the problem to 2D is to use principal component analysis to find the 2 axes of greatest change in my 3D data and making these my "X" and "Y".
I have an interesting problem that I've been trying to solve for a while. There is no "right" solution to this, as there is no strict criteria for success. What I want to accomplish is a smooth transition between two simple polygons, from polygon A to polygon B. Polygon A is completely contained within polygon B.
My criteria for this transition are:
The transition is continuous in time and space
The area that is being "filled" from polygon A into polygon B should be filled in as if there was a liquid in A that was pouring out into the shape of B
It is important that this animation can be calculated either on the fly, or be defined by a set of parameters that require little space, say less than a few Kb.
Cheating is perfectly fine, any way to solve this so that it looks good is a possible solution.
Solutions I've considered, and mostly ruled out:
Pairing up vertices in A and B and simply interpolate. Will not look good and does not work in the case of concave polygons.
Dividing the area B-A into convex polygons, perhaps a Voronoi diagram, and calculate the discrete states of the polygon by doing a BFS on the smaller convex polygons. Then I interpolate between the discrete states. Note: If polygon B-A is convex, the transition is fairly trivial. I didn't go with this solution because dividing B-A into equally sized small convex polygons was surprisingly difficult
Simulation: Subdivide polygon A. Move each vertex along the polygon line normal (outwards) in discrete but small steps. For each step, check if vertex is still inside B. If not, then move back to previous position. Repeat until A equals B. I don't like this solution because the check to see whether a vertex is inside a polygon is slow.
Does anybody have any different ideas?
If you want to keep this simple and somewhat fast, you could go ahead with your last idea where you consider scaling polygon A so that it gradually fills polygon B. You don't necessarily have to check if the scaled-outward vertices are still inside polygon B. Depending on what your code environment and API is like, you could mask the pixels of the expanding polygon A with the outline of polygon B.
In modern OpenGL, you could do this inside a fragment shader. You would have to render polygon B to a texture, send that texture to the shader, and then use that texture to look up if the current fragment being rendered maps to a texture value that has been set by polygon B. If it is not, the fragment gets discarded. You would need to have the texture be as large as the screen. If not, you would need to include some camera calculations in your shaders so you can "render" the fragment-to-test into the texture in the same way you rendered polygon B into that texture.
Greetings,
We have a set of points which represent an intersection of a 3d body and a horizontal plane. We would like to detect the 2D shapes that represent the cross sections of the body. There can be one or more such shapes. We found articles that discuss how to operate on images using Hough Transform, but we may have thousands of such points, so converting to an image is very wasteful. Is there a simpler way to do this?
Thank you
In converting your 3D model to a set of points, you have thrown away the information required to find the intersection shapes. Walk the edge-face connectivity graph of your 3D model to find the edge-plane intersection points in order.
Assuming you have, or can construct, the 3d model topography (some number of vertices, edges between vertices, faces bound by edges):
Iterate through the edge list until you find one that intersects the test plane, add it to a list
Pick one of the faces that share this edge
Iterate through the other edges of that face to find the next intersection, add it to the list
Repeat for the other face that shares that edge until you arrive back at the starting edge
You've built an ordered list of edges that intersect the plane - it's trivial to linearly interpolate each edge to find the intersection points, in order, that form the intersection shape. Note that this process assumes that the face polygons are convex, which in your case they are.
If your volume is concave you'll have multiple discrete intersection shapes, and so you need to repeat this process until all edges have been examined.
There's some java code that does this here
The algorithm / code from the accepted answer does not work for complex special cases, when the plane intersects some vertices of a concave surface. In this case "walking" the edge-face connectivity graph greedily could close some of the polygons before time.
What happens is, that because the plane intersects a vertex, at one point when walking the graph there are two possibilities for the next edge, and it does matter which one is chosen.
A possible solution is to implement a graph traversal algorithm (for instance depth-first search), and choose the longest loop which contains the starting edge.
It looks like you wanted to combine intersection points back into connected figures using some detection or Hough Transform.
Much simpler and more robust way is to immediately get not just intersection points, but contours of 3D body, where the plane cuts it.
To construct contours on the body given by triangular mesh, define the value in each mesh vertex equal to signed distance from the plane (positive on one side of the plane and negative on the other side). The marching squares algorithm for isovalue=0 can be then applied to extract the segments of the contours:
This algorithm works well even when the plane passes through a vertex or an edge of the mesh.
To better understand what is the result of plane section, please take a look at this short video. Following the links there, one can find the implementation as well.
What kind of algorithms would generate random "goo balls" like those in World of Goo. I'm using Proccesing, but any generic algorithm would do.
I guess it boils down to how to "randomly" make balls that are kind of round, but not perfectly round, and still looking realistic?
Thanks in advance!
The thing that makes objects realistic in World of Goo is not their shape, but the fact that the behavior of objects is a (more or less) realistic simulation of 2D physics, especially
bending, stretching, compressing (elastic deformation)
breaking due to stress
and all of the above with proper simulation of dynamics, with no perceivable shortcuts
So, try to make the behavior of your objects realistic and that will make them look (feel) realistic.
Not sure if this is what you're looking for since I can't look at that site from work. :)
A circle is just a special case of an ellipse, where the major and minor axes are equal. A squished ball shape is an ellipse where one of the axes is longer than the other. You can generate different lengths for the axes and rotate the ellipse around to get these kinds of irregular shapes.
Maybe Metaballs (wiki) are something to start from.. but I'm not sure.
Otherwise I would suggest a particle approach in which a ball is composed by many particles that stick together, giving an irregularity (mind that this needs a minimal physical engine to handle the spring body that keeps all particles together).
As Unreason said, World of Goo is not so much about shape, but physics simulation.
But an easy way to create ball-like irregular shapes could be to start with n vertices (points) V_1, V_2 ... V_n on a circle and apply some random deformation to it. There are many ways to do that, going from simply moving around some single vertices to complex physical simulations.
Some ideas:
1) Chose a random vertex V_i, chose a random vector T, apply that vector as a translation (movement) to V_i, apply T to all other vertices V_j, too, but scaled down depending on the "distance" from V_i (where distance could be the absolute differenece between j and i, or the actual geometric distance of V_j to V_i). For the scaling factor you could use any function f that is 1 for f(0) and decreasing for increasing distances (basically a radial basis function).
for each V_j
V_j = scalingFactor(distance(V_i, V_j)) * translationVector + V_j
2) You move V_i as in 1, but now you simulate springlike connections between all neigbouring vertices and iteratively move all vertices based on the forces created by stretched springs.
3) For more round shapes you can do 1) or 2) on the control points of a B-spline curve.
Beware of self-intersections when you move vertices too much.
Just some rough ideas, not tested...