Control the hash of methods in Python? - python-3.x

Is there a nice way to control the hash of a method of a Python class.
Let's say I have the following example:
class A:
def hello(self, arg):
print(arg)
def __hash__(self):
return 12345
a = A()
b = A()
hash(a.hello) == hash(b.hello) >>> False
Now I'm vaguely aware of why that is. Internally methods are functions that have a class reference with some magic to it but basically, they are just functions that (probably) inherit from object. So the __hash__ method of class A is only relevant to its own instances.
However, while this makes sense at first, I did realize that in Python 3.7 the example above evaluates to True, while in 3.8 it is False.
Does anyone: (1) know how to achieve this behavior in > 3.7 (thus controlling the hash of a method), and, (2) know why and what changed between the two versions (I am starting to doubt my sanity tbh)?

Related

Extract type hints for object attributes in Python [duplicate]

I want to get the type hints for an object's attributes. I can only get the hints for the class and not an instance of it.
I have tried using foo_instance.__class__ from here but that only shows the class variables.
So in the example how do I get the type hint of bar?
class foo:
var: int = 42
def __init__(self):
self.bar: int = 2
print(get_type_hints(foo)) # returns {'var': <class 'int'>}
I just had the same problem. The python doc isn't that clear since the example is made with what is now officially called dataclass.
Student(NamedTuple):
name: Annotated[str, 'some marker']
get_type_hints(Student) == {'name': str}
get_type_hints(Student, include_extras=False) == {'name': str}
get_type_hints(Student, include_extras=True) == {
'name': Annotated[str, 'some marker']
}
It give the impression that get_type_hints() works on class directly. Turns out get_type_hints() returns hints based on functions, not on class. That way it can be use with both if we know that. A normal class obviously not being instantiated at it's declaration, it does not have any of the variables set within the __init__() method who hasn't yet been called. It couldn't be that way either if we want the possibility to get the type hints from class-wide variables.
So you could either call it on __init__(), that is if variables are passed in arguments though (yes i seen it's not in your example but might help others since i didn't seen this anywhere in hours of search);
class foo:
var: int = 42
def __init__(self, bar: int = 2):
self.bar = int
print(get_type_hints(foo.__init__))
At last for your exact example i believe you have two choices. You could instantiate a temporary object and use del to clean it right after if your logic allows it. Or declare your variables as class ones with or without default values so you can get them with get_type_hints() and assign them later in instantiations.
Maybe this is a hack, and you have to be the creator of your instances, but there are a subset of cases in which using a data class will get you what you want;
Python 3.7+
#dataclass
class Foo:
bar: str = 2
if __name__ == '__main__':
f = Foo()
print(f.bar)
print(get_type_hints(f))
2
{'bar': <class 'str'>}
Hints only exist at the class level — by the time an instance is created the type of its attributes will be that of whatever value has been assigned to them. You can get the type of any instance attribute by using the first form of the built-in type() function — e.g. type(foo_instance.var).
This information isn't evaluated and only exists in the source code.
if you must get this information, you can use the ast module and extract the information from the source code yourself, if you have access to the source code.
You should also ask yourself if you need this information because in most cases reevaluating the source code will be to much effort.

Python get #property.setter decorated method in a class

In Python there is no switch/case. It is suggested to use dictionaries: What is the Python equivalent for a case/switch statement?
in Python it is good practise to use #property to implement getter/setter: What's the pythonic way to use getters and setters?
So, if I want to build a class with a list of properties to switch so I can get or update values, I can use something like:
class Obj():
"""property demo"""
#property
def uno(self):
return self._uno
#uno.setter
def uno(self, val):
self._uno = val*10
#property
def options(self):
return dict(vars(self))
But calling
o=Obj()
o.uno=10 # o.uno is now 100
o.options
I obtain {'_uno': 100} and not {'uno': 100}.
Am I missing something?
vars is really a tool for introspection, and gives you the local variables of the current space, or in a given object - it is not a good way to get attributes and variables ready for final consumption.
So, your options code must be a bit more sophisticated - one way to go
is to search the class for any properties, and then using getattr to get
the values of those properties, but using the getter code, and
introspect the instance variables, to get any methods attributed directly,
but discard the ones starting with _:
#property
def options(self):
results = {}
# search in all class attributes for properties, including superclasses:
for name in dir(self.__class__):
# obtain the object taht is associated with this name in the class
attr = getattr(self.__class__, name)
if isinstance(attr, property):
# ^ if you want to also retrieve other "property like"
# attributes, it is better to check if it as the `__get__` method and is not callable:
# "if hasattr(attr, '__get__') and not callable(attr):"
# retrieves the attribute - ensuring the getter code is run:
value = getattr(self, name)
results[name] = value
# check for the attributes assigned directly to the instance:
for name, value in self.__dict__.items():
# ^ here, vars(self) could have been used instead of self.__dict__
if not name.startswith("_"):
results[name] = value
return results
about switch..case
On a side note to your question, regarding the "switch...case" construction: please disregard all content you read saying "in Python one should use dictionaries instead of switch/case". This is incorrect.
The correct construct to replace "switch...case" in Python is the "if..elif..else". You can have all the expressiveness one does have with a C-like "switch" with a plain "if-else" tree in Python, and actually, go much beyond that, as the testing expression in if...elif can be arbitrary, and not just a matching value.
option = get_some_user_option()
if option == "A":
...
elif option == "B":
...
elif option in ("C", "D", "E"):
# common code for C, D, E
...
if option == "E":
# specialized code for "E",
else:
# option does not exist.
...
While it is possible to use a dictionary as a call table, and having functions to perform actions in the dictionary values, this construct is obviously not a "drop in" replacement for a plain switch case - starting from the point that the "case" functions can't be written inline in the dictionary, unless they can be written as a lambda function, and mainly
the point that they won't have direct access to the variables on the function calling them.

Python Cookbook recipe9.14 Discussion

When I read Python Cookbook recipe 9.14 discussion, it says that I have to convert the OrderedDict to a dict instance when making the final class object. Do I have to do that or using OrderedDict is ok?
I tried this, pass OrderedDict to type constructor, it doesn't raise any exception
class OrderedMeta(type):
def __new__(cls, clsname, bases, attr_dict):
order = []
for name, value in attr_dict.items():
if isinstance(value, Typed):
value._name = name
order.append(name)
attr_dict['_order'] = order
return type.__new__(cls, clsname, bases, attr_dict)
#classmethod
def __prepare__(cls, clsname, bases):
return OrderedDict()
code from book
class OrderedMeta(type):
def __new__(cls, clsname, bases, attr_dict):
d = dict(attr_dict)
order = []
for name, value in attr_dict.items():
if isinstance(value, Typed):
value._name = name
order.append(name)
d['_order'] = order
return type.__new__(cls, clsname, bases, d)
#classmethod
def __prepare__(cls, clsname, bases):
return OrderedDict()
enter image description here
No, it is not needed.
type.__new__ can take any mapping - maybe even with fewer methods than the full mapping procotocol - __iter__, __len__ and __getitem__ should suffice.
This is likely valid since Python 3.0 - the author of the recipe simply took a "safe road" as he was not sure what might ensue with a non-native dict being passed to type.__new__ and calling dict on the OrderedDict is a plain line of code anyway.
But it would not have made much sense to allow any custom mapping to be used in __prepare__ and then do not accept that same mapping on type.__new__ - That is, you don't even need a __new__ method on your metaclass if all you need is a custom mapping - just the __prepare__ method.
That said, this particular recipe is now obsolete anyway, as since Python 3.6 dictionaries used in class construction are ordered by default (and as of Python 3.7, all Python dictionaries are ordered by default).
You have to do that, for some reasons that David Beasley did not elaborate on further than saying that
"it may cause problems if you don't"
in his 2013 tutorial Python 3 Metaprogramming, at around 1 Hour and 30 minutes.
Since that tutorial, python 3.6 introduced dictionaries that retain their order, you can therefore, probably, safely ignore the use of an ordereddict for this recipe.

python property referring to property/attribute of member attribute?

I'm wondering if I have:
class A(object):
def __init__(self):
self.attribute = 1
self._member = 2
def _get_member(self):
return self._member
def _set_member(self, member):
self._member = member
member = property(_get_member, _set_member)
class B(object):
def __init__(self):
self._member = A()
def _get_a_member(self):
return self._member.member
def _set_a_member(self, member):
self._member.member = member
member = property(_get_a_member, _set_a_member)
Can I somehow avoid to write get/setters for A.member, and simply refer to the attribute or property of the A object?
Where the get/setters do logic, its of course needed, but if I simply wan't to expose the member/attributes of a member attribute, then writing get/setters seems like overhead.
I think even if I could write the get/setters inline that would help?
I find the question a bit unclear, however I try to explain some context.
Where the get/setters do logic, its of course needed, but if I simply wan't to expose the member/attributes of a member attribute
If there is no logic in getter/setters, then there is no need to define the attribute as a property, but the attribute can be used directly (in any context).
So
class A(object):
def __init__(self):
self.attribute = 1
self.member = 2
class B(object):
def __init__(self):
self.member = A()
B().member.member # returns 2
B().member.member = 10
In some languages, it's considered good practice to abstract instance properties with getter/setter methods, That's not necessarily the case in Python.
Python properties are useful when you'd need more control over the attribute, for example:
when there is logic (validation, etc.)
to define a readonly attribute (so only providing a getter without a setter)
Update (after the comment)
properties are not necessarily a tool to "hide" some internal implementation. Hiding in Python is a bit different than say in Java, due to very dynamic nature of Python language. It's always possible to introspect and even change objects on the fly, you can add new attributes (even methods) to objects on runtime:
b = B()
b.foo = 4 # define a new attribute on runtime
b.foo # returns 4
So Python developers rely more on conventions to hint their intentions of abstractions.
About the polymorphic members, I think it's most natural for Python classes to just share an interface, that's what's meant by Duck typing. So as long as your next implementation of A supports the same interface (provides the same methods for callers), it should not be any issue to change its implementation.
So this is what I came up with - use a method to generate the properties, with the assumption that the obj has an attribute of _member:
def generate_cls_a_property(name):
"""Small helper method for generating a 'dumb' property for the A object"""
def getter(obj):
return getattr(obj._member, name)
def setter(obj, new_value):
setattr(obj._member, name, new_value)
return property(getter, setter)
This allows me to add properties like so:
class B(object):
def __init__(self):
self._member = A()
member = generate_cls_a_property('member') # generates a dumb/pass-through property
I'll accept my own, unless someone tops it within a week.. :)

Having trouble returning through multiple classes in Python

I'm still learning and like to build things that I will eventually be doing on a regular basis in the future, to give me a better understanding on how x does this or y does that.
I haven't learned much about how classes work entirely yet, but I set up a call that will go through multiple classes.
getattr(monster, monster_class.str().lower())(1)
Which calls this:
class monster:
def vampire(x):
monster_loot = {'Gold':75, 'Sword':50.3, 'Good Sword':40.5, 'Blood':100.0, 'Ore':.05}
if x == 1:
loot_table.all_loot(monster_loot)
Which in turn calls this...
class loot_table:
def all_loot(monster_loot):
loot = ['Gold', 'Sword', 'Good Sword', 'Ore']
loot_dropped = {}
for i in monster_loot:
if i in loot:
loot_dropped[i] = monster_loot[i]
drop_chance.chance(loot_dropped)
And then, finally, gets to the last class.
class drop_chance:
def chance(loot_list):
loot_gained = []
for i in loot_list:
x = random.uniform(0.0,100.0)
if loot_list[i] >= x:
loot_gained.append(i)
return loot_gained
And it all works, except it's not returning loot_gained. I'm assuming it's just being returned to the loot_table class and I have no idea how to bypass it all the way back down to the first line posted. Could I get some insight?
Keep using return.
def foo():
return bar()
def bar():
return baz()
def baz():
return 42
print foo()
I haven't learned much about how classes work entirely yet...
Rather informally, a class definition is a description of the object of that class (a.k.a. instance of the class) that is to be created in future. The class definition contains the code (definitions of the methods). The object (the class instance) basically contains the data. The method is a kind of function that can take arguments and that is capable to manipulate the object's data.
This way, classes should represent the behaviour of the real-world objects, the class instances simulate existence of the real-world objects. The methods represent actions that the object apply on themselves.
From that point of view, a class identifier should be a noun that describes category of objects of the class. A class instance identifier should also be a noun that names the object. A method identifier is usually a verb that describes the action.
In your case, at least the class drop_chance: is suspicious at least because of naming it this way.
If you want to print something reasonable about the object--say using the print(monster)--then define the __str__() method of the class -- see the doc.

Resources