How do I update a row without the partition key? - cassandra

On my Cassandra DB with 4 Nodes, I want to execute an update statement like this.
UPDATE table_todo SET todoUserKey = '123' WHERE todoUserKey = "000";
I get an exception
InvalidRequest: Error from server: code=2200 [Ivalid query] message="Some partition key parts are missing: id"
As I understand because of Cassandra running on multiple nodes, I need to specify exactly on which node I need to execute my Update operation.
But I dont have any information about the ID. How I can perform the update statement?

You must identify the row. Cassandra requires for all write operations to provide the exact primary key. From the CQL docs of UPDATE command:
The WHERE clause is used to select the row to update and must include
all columns of the PRIMARY KEY

It isn't possible to execute your query because if it was allowed, it means Cassandra has to perform a full table scan to check every single row on every single partition on every single node in the cluster.
Allowing such update operate simply does not scale. If you had a table with billions of partitions, each with hundreds or thousands of rows in a cluster with hundreds of nodes, it's not difficult to see that the allowing the query to run is very expensive and will not perform well.
For this exact reason, you need to specify not just the partition key but the clustering column (where appropriate) so Cassandra can update the specific row (or rows) within the partition without having to perform a full table scan. Cheers!

Related

Cassandra - get all data for a certain time range

Is it possible to query a Cassandra database to get records for a certain range?
I have a table definition like this
CREATE TABLE domain(
domain_name text,
status int,
last_scanned_date long
PRIMARY KEY(text,last_scanned_date)
)
My requirement is to get all the domains which are not scanned in the last 24 hours. I wrote the following query, but this query is not efficient as Cassandra is trying to fetch entire dataset because of ALLOW FILTERING
SELECT * FROM domain where last_scanned_date<=<last24hourstimeinmillis> ALLOW FILTERING;
Then I decided to do it in two queries
1st query:
SELECT DISTINCT name from domain;
2nd query:
Use IN operator to query domains which are not scanned i nlast 24 hours
SELECT * FROM domain where
domain_name IN('domain1','domain2')
AND
last_scanned_date<=<last24hourstimeinmillis>
My second approach works, but comes with an extra overhead of querying first for distinct values.
Is there any better approach than this?
You should update your structure table definition. Currently, you are selecting domain name as your partition key while you can not have more than 2 billion records in single Cassandra partition.
I would suggest you should use your time as part of your partition key. If you are not going to receive more than 2 billion requests per day. Try to use day since epoch as the partition key. You can do composite partition keys but they won't be helpful for your query.
While querying you have to scan at max two partitions with an additional filter in a query or in your application filtering out results which do not belong to a
the range you have specified.
Go over following concepts before finalizing your design.
https://docs.datastax.com/en/cql/3.3/cql/cql_using/useCompositePartitionKeyConcept.html
https://docs.datastax.com/en/dse-planning/doc/planning/planningPartitionSize.html
Cassandra can effectively perform range queries only inside one partition. The same is for use of the aggregations, such as DISTINCT. So in your case you'll need to have only one partition that will contain all data. But that's is bad design.
You may try to split this big partition into smaller ones, by using TLDs as separate partition keys, and perform fetching in parallel from every partition - but this also will lead to imbalance, as some TLDs will have more sites than other.
Another issue with your schema is that you have last_scanned_date as clustering column, and this means that when you update last_scanned_date, you're effectively insert a new row into database - you'll need to explicitly remove row for previous last_scanned_date, otherwise the query last_scanned_date<=<last24hourstimeinmillis> will always fetch old rows that you already scanned.
Partially your problem with your current design could be solved by using the Spark that is able to perform effective scanning of full table via token range scan + range scan for every individual row - this will return only data in given time range. Or if you don't want to use Spark, you can perform token range scan in your code, something like this.

Cassandra use aggregate function and then order by that aggregate

I have a cassandra database with a table that has the following columns:
itemid
userid
rating
itemid and userid are the primary key. My query looks like this:
SELECT itemid, avg(rating) as avgRating from mytable GROUP BY itemid order by avgRating asc;
I get the following error:
InvalidRequest: Error from server: code=2200 [Invalid query] message="ORDER BY is only supported when the partition key is restricted by an EQ or an IN."
How can I fix this?
I need to order by the average ratings after so I can get the top 10 movies based on their average rating.
Cassandra can only order results by clustering column(s). It cannot order results by an aggregate function.
There are a couple of options you could look at in order to accomplish this.
Make the query and then re-order the results in your application.
This option may work if you only expect a limited number of rows to be returned from each query.
Note that it is recommended that you only use aggregate functions (like avg()) when you know that it will only apply to a limited number of rows. Ideally you should only use them when operating on a single partition (use a WHERE clause to limit to a single partition). If you don't have any limit you may see very slow queries, or query timeouts if Cassandra needs to read a large number of rows in order to calculate the aggregate.
Store a pre-calculated average in the table, or cache it in your application.
This is the best option if you need calculated averages over a larger data set.
If you make average_rating a clustering column Cassandra will store the averages for each partition in sorted order. This is very efficient from Cassandra's perspective.
The downside is that you'll need to calculate the average in your application each time you insert into or update a row, because it will be a primary key column in your Cassandra table.
One thing you could look into is using a Cassandra trigger to calculate the average for you. This may make life easier for you if you have multiple applications writing to this table, however I am not actually sure if it is possible to modify a primary key column via a custom trigger. I would recommend doing some research & testing if you decide to look at this option. You can read about triggers here.

Filter on the partition and the clustering key with an additional criteria

I want to filter on a table that has a partition and a clustering key with another criteria on a regular column. I got the following warning.
InvalidQueryException: Cannot execute this query as it might involve
data filtering and thus may have unpredictable performance. If you
want to execute this query despite the performance unpredictability,
use ALLOW FILTERING
I understand the problem if the partition and the clustering key are not used. In my case, is it a relevant error or can I ignore it?
Here is an example of the table and query.
CREATE TABLE mytable(
name text,
id uuid,
deleted boolean
PRIMARY KEY((name),id)
)
SELECT id FROM mytable WHERE name='myname' AND id='myid' AND deleted=false;
In Cassandra you can't filter data with non-primary key column unless you create index in it.
Cassandra 3.0 or up it is allowed to filter data with non primary key but in unpredictable performance
Cassandra 3.0 or up, If you provide all the primary key (as your given query) then you can use the query with ALLOW FILTERING, ignoring the warning
Otherwise filter from the client side or remove the field deleted and create another table :
Instead of updating the field to deleted true move your data to another table let's say mytable_deleted
CREATE TABLE mytable_deleted (
name text,
id uuid
PRIMARY KEY (name, id)
);
Now if you only have the non deleted data on mytable and deleted data on mytable_deleted table
or
Create index on it :
The column deleted is a low cardinality column. So remember
A query on an indexed column in a large cluster typically requires collating responses from multiple data partitions. The query response slows down as more machines are added to the cluster. You can avoid a performance hit when looking for a row in a large partition by narrowing the search.
Read More : When not to use an index

Where and Order By Clauses in Cassandra CQL

I am new to NoSQL database and have just started using apache Cassandra. I created a simple table "emp" with primary key on "empno" column. This is a simple table as we always get in Oracle's default scott schema.
Now I loaded data using the COPY command and issued query Select * from emp order by empno but I was surprised that CQL did not allow Order by on empno column (which is PK). Also when I used Where condition, it did not allow any inequality operations on empno column (it said only EQ or IN conditions are allowed). It also did not allowed Where and Order by on any other column, as they were not used in PK, and did not have an index.
Can someone please help me what should I do if I want to keep empno unique in the table and want a query results in Sorted order of empno?
(My version is:
cqlsh:demodb> show version
[cqlsh 5.0.1 | Cassandra 2.2.0 | CQL spec 3.3.0 | Native protocol v4]
)
There are two parts to a PRIMARY KEY in Cassandra:
partition key(s)
clustering key(s)
PRIMARY KEY (partitionKey1,clusteringKey1,clusteringKey2)
or
PRIMARY KEY ((partitionKey1,partitionKey2),clusteringKey1,clusteringKey2)
The partition key determines which node(s) your data is stored on. The clustering key determines the order of the data within your partition key.
In CQL, the ORDER BY clause is really only used to reverse the defined sort direction of your clustering order. As for the columns themselves, you can only specify the columns defined (and in that exact order...no skipping) in your CLUSTERING ORDER BY clause at table creation time. So you cannot pick arbitrary columns to order your result set at query-time.
Cassandra achieves performance by using the clustering keys to sort your data on-disk, thereby only returning ordered rows in a single read (no random reads). This is why you must take a query-based modeling approach (often duplicating your data into multiple query tables) with Cassandra. Know your queries ahead of time, and build your tables to serve them.
Select * from emp order by empno;
First of all, you need a WHERE clause. It's ok to query without it, if you're working with a relational database. With Cassandra, you should do your best to avoid unbound SELECT queries. Besides, Cassandra can only enforce a sort order within a partition, so querying without a WHERE clause won't return data in the order you want, anyway.
Secondly, as I mentioned above, you need to define clustering keys. If you want to order your result set by empno, then you must find another column to define as your partition key. Try something like this:
CREATE TABLE emp_by_dept (
empno text,
dept text,
name text,
PRIMARY KEY (dept,empno)
) WITH CLUSTERING ORDER BY (empno ASC);
Now, I can query employees by department, and they will be returned to me ordered by empno:
SELECT * FROM emp_by_dept WHERE dept='IT';
But to be clear, you will not be able to query every row in your table, and have it ordered by a single column. The only way to get meaningful order into your result sets, is first partition your data in a way that makes sense to your business case. Running an unbound SELECT will return all of your rows (assuming that the query doesn't time-out while trying to query every node in your cluster), but result set ordering can only be enforced within a partition. So you have to restrict by partition key in order for that to make any sense.
My apologies for self-promoting, but last year I wrote an article for DataStax called We Shall Have Order!, in which I addressed how to solve these types of problems. Give it a read and see if it helps.
Edit for additional questions:
From your answer I concluded 2 things about Cassandra:
(1) There is no
way of getting a result set which is only order by a column that has
been defined as Unique.
(2) When we define a PK
(partition-key+clustering-key), then the results will always be order
by Clustering columns within any fixed partition key (we must restrict
to one partition-key value), that means there is no need of ORDER BY
clause, since it cannot ever change the order of rows (the order in
which rows are actually stored), i.e. Order By is useless.
1) All PRIMARY KEYs in Cassandra are unique. There's no way to order your result set by your partition key. In my example, I order by empno (after partitioning by dept). – Aaron 1 hour ago
2) Stopping short of saying that ORDER BY is useless, I'll say that its only real use is to switch your sort direction between ASC and DESC.
I created an index on "empno" column of "emp" table, it is still not
allowing ORDER BY empno. So, what Indexes are for? are they only for
searching records for specific value of index key?
You cannot order a result set by an indexed column. Secondary indexes are (not the same as their relational counterparts) really only useful for edge-case, analytics-based queries. They don't scale, so the general recommendation is not to use secondary indexes.
Ok, that simply means that one table cannot be used for getting
different result sets with different conditions and different sorting
order.
Correct.
Hence for each new requirement, we need to create a new table.
IT means if we have a billion rows in a table (say Sales table), and
we need sum of sales (1) Product-wise, (2) Region-wise, then we will
duplicate all those billion rows in 2 tables with one in clustering
order of Product, the other in clustering order of Region,. and even
if we need to sum sales per Salesman_id, then we build a 3rd table,
again putting all those billion rows? is it sensible?
It's really up to you to decide how sensible it is. But lack of query flexibility is a drawback of Cassandra. To get around it you can keep creating query tables (I.E., trading disk for performance). But if it gets to a point where it becomes ungainly or difficult to manage, then it's time to think about whether or not Cassandra is really the right solution.
EDIT 20160321
Hi Aaron, you said above "Stopping short of saying that ORDER BY is useless, I'll say that its only real use is to switch your sort direction between ASC and DESC."
But i found even that is not correct. Cassandra only allows ORDER by in the same direction as we define in the "CLUSTERING ORDER BY" caluse of CREATE TABLE. If in that clause we define ASC, it allows only order by ASC, and vice versa.
Without seeing an error message, it's hard to know what to tell you on that one. Although I have heard of queries with ORDER BY failing when you have too many rows stored in a partition.
ORDER BY also functions a little odd if you specify multiple columns to sort by. If I have two clustering columns defined, I can use ORDER BY on the first column indiscriminately. But as soon as I add the second column to the ORDER BY clause, my query only works if I specify both sort directions the same (as the CLUSTERING ORDER BY definition) or both different. If I mix and match, I get this:
InvalidRequest: code=2200 [Invalid query] message="Unsupported order by relation"
I think that has to do with how the data is stored on-disk. Otherwise Cassandra would have more work to do in preparing result sets. Whereas if it requires everything to either to match or mirror the direction(s) specified in the CLUSTERING ORDER BY, it can just relay a sequential read from disk. So it's probably best to only use a single column in your ORDER BY clause, for more predictable results.
Adding a redux answer as the accepted one is quite long.
Order by is currently only supported on the clustered columns of the PRIMARY KEY
and when the partition key is restricted by an Equality or an IN operator in where clause.
That is if you have your primary key defined like this :
PRIMARY KEY ((a,b),c,d)
Then you will be able to use the ORDER BY when & only when your query has :
a where clause with all the primary key restricted either by an equality operator (=) or an IN operator such as :
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY c,d;
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY c;
These two query are the only valid ones.
Also this query would not work :
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY d,c;
because order by currently only support the ordering of columns following their declared order in the PRIMARY KEY that is in primary key definition c has been declared before d and the query violates the ordering by placing d first.

Cassandra - querying on clustering keys

I am just getting start on Cassandra and I was trying to create tables with different partition and clustering keys to see how they can be queried differently.
I created a table with primary key of the form - (a),b,c where a is the partition key and b,c are clustering key.
When querying I noticed that the following query:
select * from tablename where b=val;
results in:
Cannot execute this query as it might involve data filtering and thus
may have unpredictable performance. If you want to execute this query
despite the performance unpredictability, use ALLOW FILTERING
And using "ALLOW FILTERING" gets me what I want (even though I've heard its bad for performance).
But when I run the following query:
select * from tablename where c=val;
It says:
PRIMARY KEY column "c" cannot be restricted (preceding column "b" is either not restricted or by a non-EQ relation)
And there is no "ALLOW FILTERING" option at all.
MY QUESTION IS - Why are all clustering keys not treated the same? column b which is adjacent to the partition key 'a' is given an option of 'allow filtering' which allows querying on it while querying on column 'c' does not seem possible at all (given the way this table is laid out).
ALLOW FILTERING gets cassandra to scan through all SSTables and get the data out of it when the partition key is missing, then why cant we do the same column c?
It's not that clustering keys are not treated the same, it's that you can't skip them. This is because Cassandra uses the clustering keys to determine on-disk sort order within a partition.
To add to your example, assume PRIMARY KEY ((a),b,c,d). You could run your query (with ALLOW FILTERING) by specifying just b, or b and c. But it wouldn't allow you to specify c and d (skipping b) or b and d (skipping c).
And as a side node, if you really want to be able to query by only b or only c, then you should support those queries with additional tables designed as such. ALLOW FILTERING is a band-aid, and is not something you should ever do in a production Cassandra deployment.

Resources