On a job cluster with the following configuration:
Driver: Standard_E8ds_v5
Workers: Standard_E8ds_v5
30 workers
11.3 LTS Photon (includes Apache Spark 3.3.0, Scala 2.12)
We are about 5% of the time getting a Futures timed out after [5 seconds] error with the stack trace seen at the bottom. I was hoping the stack trace would be enough for someone to tell me what spark config I should adjust to extend this 5 second timeout.
The notebook for the job does this:
def RunChild(s):
dbutils.notebook.run("./ProcessChild", 0, {"param": s})
scenarios = [ some array with 107 items]
with ThreadPoolExecutor(max_workers=20) as executor:
final = executor.map(RunChild, scenarios)
The ProcessChild notebook fails fairly frequently on a different bit of Spark code each time with the following stack trace and error:
java.util.concurrent.TimeoutException: Futures timed out after [5 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:259)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:263)
at scala.concurrent.Await$.$anonfun$result$1(package.scala:223)
at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:57)
at scala.concurrent.Await$.result(package.scala:146)
at com.databricks.backend.daemon.driver.JupyterDriverLocal$RequestStatus.waitForReply(JupyterDriverLocal.scala:209)
at com.databricks.backend.daemon.driver.JupyterDriverLocal.repl(JupyterDriverLocal.scala:971)
at com.databricks.backend.daemon.driver.DriverLocal.$anonfun$execute$23(DriverLocal.scala:725)
at com.databricks.unity.EmptyHandle$.runWith(UCSHandle.scala:103)
at com.databricks.backend.daemon.driver.DriverLocal.$anonfun$execute$20(DriverLocal.scala:708)
at com.databricks.logging.UsageLogging.$anonfun$withAttributionContext$1(UsageLogging.scala:398)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at com.databricks.logging.AttributionContext$.withValue(AttributionContext.scala:147)
at com.databricks.logging.UsageLogging.withAttributionContext(UsageLogging.scala:396)
at com.databricks.logging.UsageLogging.withAttributionContext$(UsageLogging.scala:393)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionContext(DriverLocal.scala:62)
at com.databricks.logging.UsageLogging.withAttributionTags(UsageLogging.scala:441)
at com.databricks.logging.UsageLogging.withAttributionTags$(UsageLogging.scala:426)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionTags(DriverLocal.scala:62)
at com.databricks.backend.daemon.driver.DriverLocal.execute(DriverLocal.scala:685)
at com.databricks.backend.daemon.driver.DriverWrapper.$anonfun$tryExecutingCommand$1(DriverWrapper.scala:622)
at scala.util.Try$.apply(Try.scala:213)
at com.databricks.backend.daemon.driver.DriverWrapper.tryExecutingCommand(DriverWrapper.scala:614)
at com.databricks.backend.daemon.driver.DriverWrapper.executeCommandAndGetError(DriverWrapper.scala:533)
at com.databricks.backend.daemon.driver.DriverWrapper.executeCommand(DriverWrapper.scala:568)
at com.databricks.backend.daemon.driver.DriverWrapper.runInnerLoop(DriverWrapper.scala:438)
at com.databricks.backend.daemon.driver.DriverWrapper.runInner(DriverWrapper.scala:381)
at com.databricks.backend.daemon.driver.DriverWrapper.run(DriverWrapper.scala:232)
at java.lang.Thread.run(Thread.java:750)
The cluster is certainly busy with all the parallel threads and operations and we would like to know which spark config can extend that 5s timeout.
We're having the same issue, though more annoyingly in our instance we are running absolutely fine on 10.4LTS. Simply upgrading the runtime and re-firing results in Futures timing out after five seconds.
For us, we were able to use the following to increase the broadcast join timeout from -1000 to 300000 (5 minutes).
spark.conf.get("spark.sql.broadcastTimeout")
spark.conf.set("spark.sql.broadcastTimeout", '300000ms')
This has to be a temporary fix (at least for us haha) but hopefully it will get you out of immediate trouble. We also ended up increasing the size of our cluster to assist with the memory being used.
Given this is caused by broadcast joins, as part of our testing we were able to disable automatic broadcast joins also to see if that helped (it did but it was flaky):
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", -1)
Ref https://spark.apache.org/docs/latest/sql-performance-tuning.html
Related
I'm running a Spark job on dataproc 1.4. with external shuffle service.
Some details to follow up on the comments :
The cluster doesn't use preemptible VMs
Autoscaling is off on this cluster and no manual scale down happened.
The job fails with the error below.
What might be the cause ?
org.apache.spark.shuffle.FetchFailedException: Connection from xxx.internal/10.81.0.46:7337 closed
at org.apache.spark.storage.ShuffleBlockFetcherIterator.throwFetchFailedException(ShuffleBlockFetcherIterator.scala:554)
at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:485)
at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:64)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:435)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:441)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:31)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:248)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:246)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1394)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:252)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:174)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:173)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:411)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:417)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.IOException: Connection from xxx.internal/10.81.0.46:7337 closed
at org.apache.spark.network.client.TransportResponseHandler.channelInactive(TransportResponseHandler.java:146)
at org.apache.spark.network.server.TransportChannelHandler.channelInactive(TransportChannelHandler.java:108)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:262)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:248)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelInactive(AbstractChannelHandlerContext.java:241)
at io.netty.channel.ChannelInboundHandlerAdapter.channelInactive(ChannelInboundHandlerAdapter.java:81)
at io.netty.handler.timeout.IdleStateHandler.channelInactive(IdleStateHandler.java:277)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:262)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:248)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelInactive(AbstractChannelHandlerContext.java:241)
at io.netty.channel.ChannelInboundHandlerAdapter.channelInactive(ChannelInboundHandlerAdapter.java:81)
at org.apache.spark.network.util.TransportFrameDecoder.channelInactive(TransportFrameDecoder.java:178)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:262)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:248)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelInactive(AbstractChannelHandlerContext.java:241)
at io.netty.channel.DefaultChannelPipeline$HeadContext.channelInactive(DefaultChannelPipeline.java:1405)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:262)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:248)
at io.netty.channel.DefaultChannelPipeline.fireChannelInactive(DefaultChannelPipeline.java:901)
at io.netty.channel.AbstractChannel$AbstractUnsafe$8.run(AbstractChannel.java:818)
at io.netty.util.concurrent.AbstractEventExecutor.safeExecute(AbstractEventExecutor.java:164)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:472)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:500)
at io.netty.util.concurrent.SingleThreadEventExecutor$4.run(SingleThreadEventExecutor.java:989)
at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
... 1 more
edit August, 21
It seems the error below is in fact a consequence of this one (7337 is the default port of the external shuffle service). It reinforces the hypothesis of #dagang : the Spark shuffle service may be overloaded.
"Connection to xxx:7337 has been quiet for 120000 ms while there are outstanding requests. Assuming connection is dead; please adjust spark.network.timeout if this is wrong."
The number of partitions is already minimized. To give an idea, there are 30,000 partitions and the cluster has 100 nodes.
So I'm thinking about 3 ways to mitigate the issue
Adding more nodes in the cluster, so each shuffle service will have fewer work to do
Stopping using the external shuffle service (as suggested here : https://cloud.google.com/architecture/hadoop/migrating-apache-spark-jobs-to-cloud-dataproc)
Increasing the configuration of spark.network.timeout
What do you think ?
Clusters with preemptible VMs or an autoscaling policy may receive FetchFailedException when workers are preempted or removed before they finish serving shuffle data to reducers.
Possible causes and fixes:
Preemptible worker VMs were reclaimed or non-preemptible worker VMs were removed by the autoscaler. Solution: Use Enhanced Flexibility Mode to make secondary workers safely preemptible or scalable.
Executor or mapper crashed due to OutOfMemory error. Solution: increase the memory of executor or mapper.
The Spark shuffle service may be overloaded. Solution: decrease the number of job partitions.
See more details in this doc.
I have a spark application which consume from Kinesis with 6 shards. Data was produced to Kinesis at at most 2000 records/second. At non peak time data only comes in at 200 records/second. Each record is 0.5K Bytes. So 6 shards is enough to handle that.
I am using EMR 5.23.0, Spark 2.4.0, spark-streaming-kinesis-asl 2.4.0
I have 6 r5.4xLarge in my cluster, plenty of memory
Recently I am trying to checkpoint the application to S3. I am testing this at nonpeak time so the data incoming rate is very low like 200 records/sec. I run the Spark application by creating new context, checkpoint is created at s3, but when I kill the app and restarts, it failed to recover from checkpoint, and the error message is the following and my SparkUI shows all the batches are stucked:
19/12/24 00:15:21 WARN TaskSetManager: Lost task 571.0 in stage 33.0 (TID 4452, ip-172-17-32-11.ec2.internal, executor 9): org.apache.spark.SparkException: Gave up after 3 retries while getting shard iterator from sequence number 49601654074184110438492229476281538439036626028298502210, last exception:
at org.apache.spark.streaming.kinesis.KinesisSequenceRangeIterator$$anonfun$retryOrTimeout$2.apply(KinesisBackedBlockRDD.scala:288)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.streaming.kinesis.KinesisSequenceRangeIterator.retryOrTimeout(KinesisBackedBlockRDD.scala:282)
at org.apache.spark.streaming.kinesis.KinesisSequenceRangeIterator.getKinesisIterator(KinesisBackedBlockRDD.scala:246)
at org.apache.spark.streaming.kinesis.KinesisSequenceRangeIterator.getRecords(KinesisBackedBlockRDD.scala:206)
at org.apache.spark.streaming.kinesis.KinesisSequenceRangeIterator.getNext(KinesisBackedBlockRDD.scala:162)
at org.apache.spark.streaming.kinesis.KinesisSequenceRangeIterator.getNext(KinesisBackedBlockRDD.scala:133)
at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:462)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.shuffle.sort.UnsafeShuffleWriter.write(UnsafeShuffleWriter.java:187)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: com.amazonaws.services.kinesis.model.ProvisionedThroughputExceededException: Rate exceeded for shard shardId-000000000004 in stream my-stream-name under account my-account-number. (Service: AmazonKinesis; Status Code: 400; Error Code: ProvisionedThroughputExceededException; Request ID: e368b876-c315-d0f0-b513-e2af2bd14525)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.handleErrorResponse(AmazonHttpClient.java:1712)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeOneRequest(AmazonHttpClient.java:1367)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeHelper(AmazonHttpClient.java:1113)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.doExecute(AmazonHttpClient.java:770)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeWithTimer(AmazonHttpClient.java:744)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.execute(AmazonHttpClient.java:726)
at com.amazonaws.http.AmazonHttpClient$RequestExecutor.access$500(AmazonHttpClient.java:686)
at com.amazonaws.http.AmazonHttpClient$RequestExecutionBuilderImpl.execute(AmazonHttpClient.java:668)
at com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:532)
at com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:512)
at com.amazonaws.services.kinesis.AmazonKinesisClient.doInvoke(AmazonKinesisClient.java:2782)
at com.amazonaws.services.kinesis.AmazonKinesisClient.invoke(AmazonKinesisClient.java:2749)
at com.amazonaws.services.kinesis.AmazonKinesisClient.invoke(AmazonKinesisClient.java:2738)
at com.amazonaws.services.kinesis.AmazonKinesisClient.executeGetShardIterator(AmazonKinesisClient.java:1383)
at com.amazonaws.services.kinesis.AmazonKinesisClient.getShardIterator(AmazonKinesisClient.java:1355)
at org.apache.spark.streaming.kinesis.KinesisSequenceRangeIterator$$anonfun$3.apply(KinesisBackedBlockRDD.scala:247)
at org.apache.spark.streaming.kinesis.KinesisSequenceRangeIterator$$anonfun$3.apply(KinesisBackedBlockRDD.scala:247)
at org.apache.spark.streaming.kinesis.KinesisSequenceRangeIterator.retryOrTimeout(KinesisBackedBlockRDD.scala:269)
... 20 more
My batch interval is 2.5 minutes, and I create the stream the regular way:
val kinesisStreams = (0 until 6).map { i =>
KinesisUtils.createStream(ssc, "MyKinesisStreamName", settings.kinesis_stream, settings.kinesis_endpoint, settings.kinesis_region, settings.kinesis_initial_position, Milliseconds(settings.spark_batchinterval_seconds*1000), StorageLevel.MEMORY_AND_DISK)
}
val unionStreams = ssc.union(kinesisStreams)
.map(linebytes => new String(linebytes, "UTF-8").replace("\"", ""))
Someone reported the same problem and does not seem to have an answer:
http://mail-archives.apache.org/mod_mbox/spark-issues/201807.mbox/%3CJIRA.13175528.1532948992000.116869.1532949000171#Atlassian.JIRA%3E
Checkpointing records with Amazon KCL throws ProvisionedThroughputExceededException
Since Spark consuming from Kinesis with checkpoint are such a common thing in many Spark application, I am wondering whether I did anything wrong? Is there any other person experiencing the same and how to resolve this?
I am wondering if this is because my batch interval 2.5 minutes (150 seconds) is too long? because 150 seconds*200 record/second = 30000 records per batch and when checkpoint recovery is trying to load 30000 records from kinesis it will throw the error? Should I increase my shard count to 30 from 6?
Please help, I have to find an answer so this is frustrating.
Appreciate your help.
I tried to broadcast a DataFrame which turned out to be larger than spark.sql.autoBroadcastJoinThreshold, and the driver logged
Exception in thread "broadcast-exchange-0" java.lang.OutOfMemoryError Not enough memory to build and broadcast the table to all worker nodes. As a workaround, you can...
However, instead of returning to Driver thread and fail, the app just hangs and the driver is stuck at:
sun.misc.Unsafe.park(Native Method)
java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:215)
java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedNanos(AbstractQueuedSynchronizer.java:1037)
java.util.concurrent.locks.AbstractQueuedSynchronizer.tryAcquireSharedNanos(AbstractQueuedSynchronizer.java:1328)
scala.concurrent.impl.Promise$DefaultPromise.tryAwait(Promise.scala:208)
scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:218)
scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:201)
org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:136)
org.apache.spark.sql.execution.InputAdapter.doExecuteBroadcast(WholeStageCodegenExec.scala:367)
org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:144)
org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:140)
org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
...
...
spark.sql.broadcastTimeout is set to a quite high number due to other historic issues we had, and indeed the driver failed on timeout eventually, but still I wonder if this is the expected behavior? I tried to get my head around ThreadUtils.awaitResult but I can't find evidence that this is behavior is (explicitly) expected.
Can anyone confirm this is not a bug?
I am using Spark 2.2.0 to do data processing. I am using Dataframe.join to join 2 dataframes together, however I encountered this stack trace:
18/03/29 11:27:06 INFO YarnAllocator: Driver requested a total number of 0 executor(s).
18/03/29 11:27:09 ERROR FileFormatWriter: Aborting job null.
org.apache.spark.SparkException: Exception thrown in awaitResult:
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:205)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:123)
at org.apache.spark.sql.execution.InputAdapter.doExecuteBroadcast(WholeStageCodegenExec.scala:248)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:135)
at org.apache.spark.sql.execution.SparkPlan.executeBroadcast(SparkPlan.scala:126)
at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.prepareBroadcast(BroadcastHashJoinExec.scala:98)
at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.codegenInner(BroadcastHashJoinExec.scala:197)
at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.doConsume(BroadcastHashJoinExec.scala:82)
at org.apache.spark.sql.execution.CodegenSupport$class.consume(WholeStageCodegenExec.scala:155)
...........
Caused by: org.apache.spark.SparkException: Cannot broadcast the table that is larger than 8GB: 10 GB
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1$$anonfun$apply$1.apply(BroadcastExchangeExec.scala:86)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1$$anonfun$apply$1.apply(BroadcastExchangeExec.scala:73)
at org.apache.spark.sql.execution.SQLExecution$.withExecutionId(SQLExecution.scala:103)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1.apply(BroadcastExchangeExec.scala:72)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1.apply(BroadcastExchangeExec.scala:72)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
I searched on Internet for this error, but didn't get any hint or solution how to fix this.
Does Spark automatically broadcast Dataframe as part of the join? I am very surprise with this 8GB limit because I would have thought Dataframe supports "big data" and 8GB is not very big at all.
Thank you very much in advance for your advice on this.
Linh
After some reading, I've tried to disable the auto-broadcast and it seemed to work. Change Spark config with:
'spark.sql.autoBroadcastJoinThreshold': '-1'
Currently it is a hard limit in spark that the broadcast variable size should be less than 8GB. See here.
The 8GB size is generally big enough. If you consider that you re running a job with 100 executors, spark driver needs to send the 8GB data to 100 Nodes resulting 800GB network traffic. This cost will be much less if you don't broadcast and use simple join.
I did not configure any timeout value but used default settings.
Where to configure 3600 seconds timeout? How to solve it?
Error message:
18/01/10 13:51:44 WARN Executor: Issue communicating with driver in heartbeater
org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [3600 seconds]. This timeout is controlled by spark.executor.heartbeatInterval
at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:47)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:62)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:58)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:76)
at org.apache.spark.rpc.RpcEndpointRef.askSync(RpcEndpointRef.scala:92)
at org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$reportHeartBeat(Executor.scala:738)
at org.apache.spark.executor.Executor$$anon$2$$anonfun$run$1.apply$mcV$sp(Executor.scala:767)
at org.apache.spark.executor.Executor$$anon$2$$anonfun$run$1.apply(Executor.scala:767)
at org.apache.spark.executor.Executor$$anon$2$$anonfun$run$1.apply(Executor.scala:767)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1948)
at org.apache.spark.executor.Executor$$anon$2.run(Executor.scala:767)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.util.concurrent.TimeoutException: Futures timed out after [3600 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:201)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75)
... 14 more
In the error message it says:
This timeout is controlled by spark.executor.heartbeatInterval
Hence, the first thing you try is increasing this value. It can be done in multiple ways, for example increasing the value to 10000 seconds:
When using spark-submit simply add the flag:
--conf spark.executor.heartbeatInterval=10000s
You can add a line in spark-defaults.conf:
spark.executor.heartbeatInterval 10000s
When creating a new SparkSession in your program, add a config parameter (Scala):
val spark = SparkSession.builder
.config("spark.executor.heartbeatInterval", "10000s")
.getOrCreate()
If this does not help, it could be a good idea to try increasing the value of spark.network.timeout as well. It is also a common source for problem related to these types of timeouts.
val spark = SparkSession.builder().appName("SQL_DataFrame")
.master("local")
.config("spark.network.timeout", "600s")
.config("spark.executor.heartbeatInterval", "10000s")
.getOrCreate()
Tested. It solved the problem.