Why can't I convert yolov1 weights to the Pytorch model? - pytorch

I have written an exact yolov1 model and am trying to load the pre-trained weights on ImageNet on Extraction model. https://pjreddie.com/darknet/imagenet
I have a separate class with the Extraction model and I load weights there from a binary file of weights with ImageNet, but when loading weights, I am missing one weight in the very last layer. If I display the size of the buffer and the required space for the weights, I will see a difference of 1.
required size: 23455400
buffer size: 23455399
Error on the last layer:
torch.from_numpy(buf[start:start + num_w]).reshape(conv_layer.weight.data.shape))
RuntimeError: shape '[1000, 1024, 1, 1]' is invalid for input of size 1023999
Where can there be a problem?
I wrote the Extraction model and try to load weights.
My model with load function:
class Extraction(nn.Module):
def __init__(self):
super().__init__()
self.conv_block = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.LeakyReLU(negative_slope=0.1),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=64, out_channels=192, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(192),
nn.LeakyReLU(negative_slope=0.1),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=192, out_channels=128, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(negative_slope=0.1),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(1024),
nn.LeakyReLU(negative_slope=0.1),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(1024),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(negative_slope=0.1),
nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(1024),
nn.LeakyReLU(negative_slope=0.1)
)
self.classifier = nn.Sequential(
nn.Conv2d(in_channels=1024, out_channels=1000, kernel_size=1, stride=1, padding=0, bias=True),
nn.LeakyReLU(negative_slope=0.1),
nn.AvgPool2d(kernel_size=13, stride=13),
nn.Flatten()
)
def forward(self, x):
x = self.conv_block(x)
return self.classifier(x)
def load_weights(self, weightfile):
with open(weightfile, 'rb') as fp:
header = np.fromfile(fp, count=5, dtype=np.int32)
buf = np.fromfile(fp, dtype=np.float32)
start = 0
# load weights to convolution layers
for num_layer, layer in enumerate(self.conv_block):
if start >= buf.size:
break
if isinstance(layer, nn.modules.conv.Conv2d):
conv_layer = self.conv_block[num_layer]
if num_layer + 1 != len(self.conv_block):
if isinstance(self.conv_block[num_layer + 1], nn.modules.BatchNorm2d):
batch_norm_layer = self.conv_block[num_layer + 1]
start = load_conv_batch_norm(buf, start, conv_layer, batch_norm_layer)
else:
start = load_conv(buf, start, conv_layer)
# load weights to output layer
conv_layer = self.classifier[0]
start = load_conv(buf, start, conv_layer)
print("start: ", start)
print("buf size:", buf.size)
And my helper function:
def load_conv_batch_norm(buf, start, conv_layer, batch_norm_layer):
num_w = conv_layer.weight.numel()
num_b = batch_norm_layer.bias.numel()
batch_norm_layer.bias.data.copy_(torch.from_numpy(buf[start:start + num_b]))
start += num_b
batch_norm_layer.weight.data.copy_(torch.from_numpy(buf[start:start + num_b]))
start += num_b
batch_norm_layer.running_mean.copy_(torch.from_numpy(buf[start:start + num_b]))
start += num_b
batch_norm_layer.running_var.copy_(torch.from_numpy(buf[start:start + num_b]))
start += num_b
conv_layer.weight.data.copy_(
torch.from_numpy(buf[start:start + num_w]).reshape(conv_layer.weight.data.shape))
start += num_w
return start
def load_conv(buf, start, conv_layer):
num_w = conv_layer.weight.numel()
num_b = conv_layer.bias.numel()
conv_layer.bias.data.copy_(torch.from_numpy(buf[start:start + num_b]))
start += num_b
conv_layer.weight.data.copy_(
torch.from_numpy(buf[start:start + num_w]).reshape(conv_layer.weight.data.shape))
start += num_w
return start

Related

conv2d() received an invalid combination of arguments

After resnet convolution, I want to further compress the 256 dimensions to 20 dimensions. I directly wrote a layer in the back, but after forward propagation, there is an error in this layer, I don't know why?
def forward(self, x):
x = self.conv1(x)
dif_residual1 = self.downsample1(x)
x = self.layer1_1(x)
x =x + dif_residual1
residual = x
x = self.layer1_2(x)
x = x + residual
residual = x
x = self.layer1_3(x)
x = x + residual
if self.out_channel != 256:
x = self.layer2
filters = torch.ones(self.batch_size, self.out_channel, 1, 1).detach().requires_grad_(False).to(self.device)
x = F.conv2d(x, weight=filters, padding=0)
The dimension of x before I do if is:
x = {Tensor:(1,256,117,240)}
But after the if statement is executed, it becomes what the picture shows。
The error I get is this:
x = F.conv2d(feature, weight=filters, padding=0)
TypeError: conv2d() received an invalid combination of arguments - got (Sequential, weight=Tensor, padding=int), but expected one of:
* (Tensor input, Tensor weight, Tensor bias, tuple of ints stride, tuple of ints padding, tuple of ints dilation, int groups)
* (Tensor input, Tensor weight, Tensor bias, tuple of ints stride, str padding, tuple of ints dilation, int groups)
Encounter a new problem:
File "D:\software\Anaconda\envs\torch1.10\lib\site-packages\torch\autograd\__init__.py", line 173, in backward
Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [1, 1, 117, 240]], which is output 0 of AddBackward0, is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
My code:
class VGG(nn.Module):
def __init__(self, in_channel, out_channel=None, init_weights=True, device='gpu',batch_size=1):
super(VGG, self).__init__()
self.batch_size = batch_size
self.out_channel = out_channel
if device == 'gpu':
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
else:
self.device = torch.device("cpu")
modes = 'reflect'
out_channel1 = 64
self.conv1_1 = nn.Sequential(
nn.Conv2d(in_channels=in_channel, out_channels=out_channel1, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel1),
nn.LeakyReLU()
)
self.conv1_2 = nn.Sequential(
nn.Conv2d(in_channels=out_channel1, out_channels=out_channel1, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel1),
nn.LeakyReLU()
)
out_channel2 = 128
self.conv2_1 = nn.Sequential(
nn.Conv2d(in_channels=out_channel1, out_channels=out_channel2, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel2),
nn.LeakyReLU()
)
self.conv2_2 = nn.Sequential(
nn.Conv2d(in_channels=out_channel2, out_channels=out_channel2, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel2),
nn.LeakyReLU()
)
out_channel3 = 256
self.conv3_1 = nn.Sequential(
nn.Conv2d(in_channels=out_channel2, out_channels=out_channel3, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel3),
nn.LeakyReLU()
)
self.conv3_2 = nn.Sequential(
nn.Conv2d(in_channels=out_channel3, out_channels=out_channel3, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel3),
nn.LeakyReLU()
)
if out_channel == None:
self.out_channel = 256
self.conv3_3 = nn.Sequential(
nn.Conv2d(in_channels=out_channel3, out_channels=out_channel3, kernel_size=3, stride=1, padding=1,
padding_mode=modes, bias=False),
nn.BatchNorm2d(out_channel3),
nn.LeakyReLU()
)
else:
self.conv3_3 = nn.Sequential(
nn.Conv2d(in_channels=out_channel3, out_channels=out_channel3, kernel_size=3, stride=1, padding=1, padding_mode=modes, bias=False),
nn.BatchNorm2d(out_channel3),
nn.LeakyReLU(),
nn.Conv2d(in_channels=out_channel3, out_channels=out_channel, kernel_size=3, stride=1, padding=1, padding_mode=modes, bias=False),
nn.BatchNorm2d(out_channel),
nn.LeakyReLU()
)
if init_weights:
self._init_weight()
def forward(self, x):
x = self.conv1_1(x)
x = self.conv1_2(x)
x = self.conv2_1(x)
x = self.conv2_2(x)
x = self.conv3_1(x)
x = self.conv3_2(x)
x = self.conv3_3(x)
feature = x
filters = torch.ones(self.batch_size, self.out_channel, 1, 1).detach().requires_grad_(False).to(self.device)
x = F.conv2d(x, weight = filters, padding = 0)
return x,feature
out_channel = 20
model = VGG(in_channel=12, out_channel=out_channel, init_weights=True, batch_size=batch_size)
for epoch in range(start_epoch+1,epochs):
# train
model.train()
running_loss = 0.0
train_bar = tqdm(train_loader, file=sys.stdout)
for step, data in enumerate(train_bar):
images, labels = data
optimizer.zero_grad()
outputs,feature = model(images.to(device))
outputs = tonser_nolmal(outputs)
loss = loss_function(outputs, labels.to(device))
loss.backward()
optimizer.step()
running_loss += loss.item()
train_bar.desc = "train epoch[{}/{}] loss:{:.6f}".format(epoch + 1,
epochs,
loss)
checkpoint = {
"net": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch
}
torch.save(checkpoint, save_path + "/model-{}.pth".format(epoch))
# validate
model.eval()
count_acc = 0.0
count_mae = 0.0
with torch.no_grad():
val_bar = tqdm(validate_loader, file=sys.stdout)
for val_data in val_bar:
val_images, val_labels = val_data
outputs,_ = model(val_images.to(device))
# outputs = F.normalize(outputs,dim=3)
outputs = tonser_nolmal(outputs)
loss = loss_function(outputs, val_labels.to(device))
count_acc = count_acc + loss.item()
mae = Evaluation().MAE(outputs, val_labels.to(device))
count_mae = count_mae + mae.item()
The error is likely to be caused by the following variable assignment:
if self.out_channel != 256:
x = self.layer2
which can be easily fixed by changing it to
x = self.layer2(x)
Update:
As OP updated his code, I did some test. There were several things which I found problematic:
self._init_weight was not provided, so I commented it out;
filters = torch.ones(self.batch_size, self.out_channel, 1, 1).detach().requires_grad_(False).to(self.device). The filter weight should have a shape of (c_out, c_in, kernel_size, kernel_size). However, batch_size appeared in the position of out_channels.
The role of filter in the forward was not clear to me. If you wanted to reduce the out_channels further from 256 to 20, then initializing your model with VGG(..., out_channel=20) is sufficient. Basically, self.conv3_3 would do the job.
On my end, I modified the code a little bit and it ran successfully:
import sys
import torch
import torch.nn as nn
from tqdm import tqdm
from torchvision.datasets import FakeData
from torch.utils.data import DataLoader
import torch.nn.functional as F
dataset = [torch.randn(12, 64, 64) for _ in range(1000)]
train_loader = DataLoader(dataset, batch_size=1, shuffle=True)
class VGG(nn.Module):
def __init__(self, in_channel, out_channel=None, init_weights=True, device='cpu', batch_size=1):
super(VGG, self).__init__()
self.batch_size = batch_size
self.out_channel = out_channel
self.device = device
modes = 'reflect'
out_channel1 = 64
self.conv1_1 = nn.Sequential(
nn.Conv2d(in_channels=in_channel, out_channels=out_channel1, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel1),
nn.LeakyReLU()
)
self.conv1_2 = nn.Sequential(
nn.Conv2d(in_channels=out_channel1, out_channels=out_channel1, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel1),
nn.LeakyReLU()
)
out_channel2 = 128
self.conv2_1 = nn.Sequential(
nn.Conv2d(in_channels=out_channel1, out_channels=out_channel2, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel2),
nn.LeakyReLU()
)
self.conv2_2 = nn.Sequential(
nn.Conv2d(in_channels=out_channel2, out_channels=out_channel2, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel2),
nn.LeakyReLU()
)
self.out_channel3 = out_channel3 = 256
self.conv3_1 = nn.Sequential(
nn.Conv2d(in_channels=out_channel2, out_channels=out_channel3, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel3),
nn.LeakyReLU()
)
self.conv3_2 = nn.Sequential(
nn.Conv2d(in_channels=out_channel3, out_channels=out_channel3, kernel_size=3, stride=1, padding=1, padding_mode = modes, bias=False),
nn.BatchNorm2d(out_channel3),
nn.LeakyReLU()
)
self.out_channel = out_channel
if out_channel == None:
self.conv3_3 = nn.Sequential(
nn.Conv2d(in_channels=out_channel3, out_channels=out_channel3, kernel_size=3, stride=1, padding=1,
padding_mode=modes, bias=False),
nn.BatchNorm2d(out_channel3),
nn.LeakyReLU()
)
else:
self.conv3_3 = nn.Sequential(
nn.Conv2d(in_channels=out_channel3, out_channels=out_channel3, kernel_size=3, stride=1, padding=1, padding_mode=modes, bias=False),
nn.BatchNorm2d(out_channel3),
nn.LeakyReLU(),
nn.Conv2d(in_channels=out_channel3, out_channels=out_channel, kernel_size=3, stride=1, padding=1, padding_mode=modes, bias=False),
nn.BatchNorm2d(out_channel),
nn.LeakyReLU()
)
# The implementation of _init_weight is not found
# if init_weights:
# self._init_weight()
def forward(self, x):
x = self.conv1_1(x)
x = self.conv1_2(x)
x = self.conv2_1(x)
x = self.conv2_2(x)
x = self.conv3_1(x)
x = self.conv3_2(x)
x = self.conv3_3(x)
feature = x
if x.shape[1] == 256: # self.out_channel is None
filters = torch.ones(20, self.out_channel3, 1, 1).to(self.device)
x = F.conv2d(x, weight = filters, padding = 0)
return x, feature
out_channel = 20
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = VGG(in_channel=12, out_channel=None, init_weights=True, device=device, batch_size=1)
model.to(device)
print(model(next(iter(train_loader)).to(device))[0].shape)
model = VGG(in_channel=12, out_channel=20, init_weights=True, device=device, batch_size=1)
model.to(device)
print(model(next(iter(train_loader)).to(device))[0].shape)
Outputs:
torch.Size([1, 20, 64, 64])
torch.Size([1, 20, 64, 64])

Why am I wrong in the input of the tensor?

Here is my class for cnn.
class SimpleCnn(nn.Module):
def __init__(self, n_classes):
super().__init__()
self.layer1 = nn.Sequential( # 224*224
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1),
nn.ReLU(),
nn.BatchNorm2d(64),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer2 = nn.Sequential( # 112*112
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1),
nn.ReLU(),
nn.BatchNorm2d(128),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer3 = nn.Sequential( # 56*56
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1),
nn.ReLU(),
nn.BatchNorm2d(256),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer3 = nn.Sequential( # 28*28
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=1),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer4 = nn.Sequential( # 14*14
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.out1 = nn.Linear(512*7*7, 4096) # 7*7
self.out2 = nn.Linear(4096, n_classes)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.view(1, -1)
x = self.out1(x)
logits = self.out2(x)
return logits
And it returns such a mistake.
RuntimeError: Given groups=1, weight of size [512, 256, 3, 3], expected input[64, 128, 56, 56] to have 256 channels, but got 128 channels instead.
I've seen other mistakes of such a type but can't find where I'm wrong here.
Thank you for your answer.
In your code self.layer3 is first defined but then overwritten (a copy-pasta error I assume?). The error is thrown because in the redefinition of layer3 you assume the input has 256 channels, but the output from self.layer2 only has 128 channels.

`*** RuntimeError: mat1 dim 1 must match mat2 dim 0` whenever I run model(images)

def __init__(self):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=2, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=2, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=2, bias=False),
nn.BatchNorm2d(64),
)
How can I deal with this error? I think the error is with self.fc, but I can't say how to fix it.
The output from self.conv(x) is of shape torch.Size([32, 64, 2, 2]): 32*64*2*2= 8192 (this is equivalent to (self.conv_out_size). The input to fully connected layer expects a single dimension vector i.e. you need to flatten it before passing to a fully connected layer in the forward function.
i.e.
class Network():
...
def foward():
...
conv_out = self.conv(x)
print(conv_out.shape)
conv_out = conv_out.view(-1, 32*64*2*2)
print(conv_out.shape)
x = self.fc(conv_out)
return x
output
torch.Size([32, 64, 2, 2])
torch.Size([1, 8192])
EDIT:
I think you're using self._get_conv_out function wrong.
It should be
def _get_conv_out(self, shape):
output = self.conv(torch.zeros(1, *shape)) # not (32, *size)
return int(numpy.prod(output.size()))
then, in the forward pass, you can use
conv_out = self.conv(x)
# flatten the output of conv layers
conv_out = conv_out.view(conv_out.size(0), -1)
x = self.fc(conv_out)
For an input of (32, 1, 110, 110), the output should be torch.Size([32, 2]).
I had the same problem however I have solved it by using a batch of 32 and tensor size of [3, 32, 32] for my images and the following configurations on my model. I am using ResNet with 9 CNN and looking for 4 outputs.
transform = transforms.Compose([transforms.Resize((32, 32)), transforms.ToTensor()])
def conv_block(in_channels, out_channels, pool=False):
layers = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)]
if pool: layers.append(nn.MaxPool2d(2))
return nn.Sequential(*layers)
class ResNet9(ImageClassificationBase):
def __init__(self, in_channels, num_classes):
super().__init__()
self.conv1 = conv_block(in_channels, 64)
self.conv2 = conv_block(64, 128, pool=True)
self.res1 = nn.Sequential(conv_block(128, 128), conv_block(128, 128))
self.conv3 = conv_block(128, 256, pool=True)
self.conv4 = conv_block(256, 512, pool=True)
self.res2 = nn.Sequential(conv_block(512, 512), conv_block(512, 512))
self.classifier = nn.Sequential(nn.MaxPool2d(4),
nn.Flatten(),
nn.Dropout(0.2),
nn.Linear(512, num_classes))
def forward(self, xb):
out = self.conv1(xb)
out = self.conv2(out)
out = self.res1(out) + out
out = self.conv3(out)
out = self.conv4(out)
out = self.res2(out) + out
out = self.classifier(out)
return out

Pytorch: The size of tensor a (24) must match the size of tensor b (48) at non-singleton dimension 3

Below code works fine and generate proper results.
import torch
import torch.nn as nn
import torch.nn.functional as F
from modules import ConvLSTMCell, Sign
class EncoderCell(nn.Module):
def __init__(self):
super(EncoderCell, self).__init__()
self.conv = nn.Conv2d(
3, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.rnn1 = ConvLSTMCell(
64,
256,
kernel_size=3,
stride=2,
padding=1,
hidden_kernel_size=1,
bias=False)
self.rnn2 = ConvLSTMCell(
256,
512,
kernel_size=3,
stride=2,
padding=1,
hidden_kernel_size=1,
bias=False)
self.rnn3 = ConvLSTMCell(
512,
512,
kernel_size=3,
stride=2,
padding=1,
hidden_kernel_size=1,
bias=False)
def forward(self, input, hidden1, hidden2, hidden3):
x = self.conv(input)
hidden1 = self.rnn1(x, hidden1)
x = hidden1[0]
hidden2 = self.rnn2(x, hidden2)
x = hidden2[0]
hidden3 = self.rnn3(x, hidden3)
x = hidden3[0]
return x, hidden1, hidden2, hidden3
class Binarizer(nn.Module):
def __init__(self):
super(Binarizer, self).__init__()
self.conv = nn.Conv2d(512, 32, kernel_size=1, bias=False)
self.sign = Sign()
def forward(self, input):
feat = self.conv(input)
x = F.tanh(feat)
return self.sign(x)
class DecoderCell(nn.Module):
def __init__(self):
super(DecoderCell, self).__init__()
self.conv1 = nn.Conv2d(
32, 512, kernel_size=1, stride=1, padding=0, bias=False)
self.rnn1 = ConvLSTMCell(
512,
512,
kernel_size=3,
stride=1,
padding=1,
hidden_kernel_size=1,
bias=False)
self.rnn2 = ConvLSTMCell(
128,
512,
kernel_size=3,
stride=1,
padding=1,
hidden_kernel_size=1,
bias=False)
self.rnn3 = ConvLSTMCell(
128,
256,
kernel_size=3,
stride=1,
padding=1,
hidden_kernel_size=3,
bias=False)
self.rnn4 = ConvLSTMCell(
64,
128,
kernel_size=3,
stride=1,
padding=1,
hidden_kernel_size=3,
bias=False)
self.conv2 = nn.Conv2d(
32, 3, kernel_size=1, stride=1, padding=0, bias=False)
def forward(self, input, hidden1, hidden2, hidden3, hidden4):
x = self.conv1(input)
hidden1 = self.rnn1(x, hidden1)
x = hidden1[0]
x = F.pixel_shuffle(x, 2)
hidden2 = self.rnn2(x, hidden2)
x = hidden2[0]
x = F.pixel_shuffle(x, 2)
hidden3 = self.rnn3(x, hidden3)
x = hidden3[0]
x = F.pixel_shuffle(x, 2)
hidden4 = self.rnn4(x, hidden4)
x = hidden4[0]
x = F.pixel_shuffle(x, 2)
x = F.tanh(self.conv2(x)) / 2
return x, hidden1, hidden2, hidden3, hidden4
Now i have changed in self.con and add pretrained resent with layer. Now it shows tensor mismatched error after training. All things are same just add this line in code. I put ** in those line
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
from modules import ConvLSTMCell, Sign
class EncoderCell(nn.Module):
def __init__(self):
super(EncoderCell, self).__init__()
#self.conv = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
**resConv = models.resnet50(pretrained=True)
resConv.layer4 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.conv = resConv.layer4**
self.rnn1 = ConvLSTMCell(
64,
256,
kernel_size=3,
stride=2,
padding=1,
hidden_kernel_size=1,
bias=False)
self.rnn2 = ConvLSTMCell(
256,
512,
kernel_size=3,
stride=2,
padding=1,
hidden_kernel_size=1,
bias=False)
self.rnn3 = ConvLSTMCell(
512,
512,
kernel_size=3,
stride=2,
padding=1,
hidden_kernel_size=1,
bias=False)
def forward(self, input, hidden1, hidden2, hidden3):
x = self.conv(input)
hidden1 = self.rnn1(x, hidden1)
x = hidden1[0]
hidden2 = self.rnn2(x, hidden2)
x = hidden2[0]
hidden3 = self.rnn3(x, hidden3)
x = hidden3[0]
return x, hidden1, hidden2, hidden3
class Binarizer(nn.Module):
def __init__(self):
super(Binarizer, self).__init__()
self.conv = nn.Conv2d(512, 32, kernel_size=1, bias=False)
self.sign = Sign()
def forward(self, input):
feat = self.conv(input)
x = F.tanh(feat)
return self.sign(x)
class DecoderCell(nn.Module):
def __init__(self):
super(DecoderCell, self).__init__()
**resConv = models.resnet50(pretrained=True)
resConv.layer4 = nn.Conv2d(32, 512, kernel_size=3, stride=2, padding=1, bias=False)
self.conv1 = resConv.layer4**
self.rnn1 = ConvLSTMCell(
512,
512,
kernel_size=3,
stride=1,
padding=1,
hidden_kernel_size=1,
bias=False)
self.rnn2 = ConvLSTMCell(
128,
512,
kernel_size=3,
stride=1,
padding=1,
hidden_kernel_size=1,
bias=False)
self.rnn3 = ConvLSTMCell(
128,
256,
kernel_size=3,
stride=1,
padding=1,
hidden_kernel_size=3,
bias=False)
self.rnn4 = ConvLSTMCell(
64,
128,
kernel_size=3,
stride=1,
padding=1,
hidden_kernel_size=3,
bias=False)
**resConv2 = models.resnet50(pretrained=True)
resConv2.layer4 = nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0, bias=False)
self.conv2 = resConv2.layer4**
def forward(self, input, hidden1, hidden2, hidden3, hidden4):
x = self.conv1(input)
hidden1 = self.rnn1(x, hidden1)
x = hidden1[0]
x = F.pixel_shuffle(x, 2)
hidden2 = self.rnn2(x, hidden2)
x = hidden2[0]
x = F.pixel_shuffle(x, 2)
hidden3 = self.rnn3(x, hidden3)
x = hidden3[0]
x = F.pixel_shuffle(x, 2)
hidden4 = self.rnn4(x, hidden4)
x = hidden4[0]
x = F.pixel_shuffle(x, 2)
x = F.tanh(self.conv2(x)) / 2
return x, hidden1, hidden2, hidden3, hidden4
You are doing it a wrong way, some explanation is,
**resConv = models.resnet50(pretrained=True) # you are reading a model
now you are replacing the layer in that model with newly initialized layer. Secondly, layer4 in resnet50 is a sequential block containing multiple layers. Use print to see exact the layers in model.
resConv.layer4 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
here you are using new layer.
self.conv = resConv.layer4**
As per your query regarding usage of pretrained layer, you should do it like this,
resConv = models.resnet50(pretrained=True)
print(resConv) #see the layer which you want to use
self.conv = resConv.conv1 # replace conv1 with that layer
# note: conv1 is the name of first conv layer in resnet
To add to this, I would also recommend acquiring and adding this layer (or the weights and biases) outside of the object initialization. Something like:
enc = EncoderCell()
resnet50 = models.resnet50(pretrained=True)
and then either
enc.conv = resnet50.conv1
or more ideally
enc.conv.load_state_dict(resnet50.layer1.state_dict())
The reason being, calling state_dict() on a nn.Module class creates a clone of the parameters (weights and biases in this case) which can be loaded via nn.Module.load_state_dict() method as long as the two instances of nn.Module share the same shape. So you get the pretrained weights and they are completely detached from the pretrained model. Then you can get rid of the pretrained model since it could be rather large in memory.
del resnet50
I submitted a potential improvement to the other answer, but to address the errors you are getting I am answering here also. If the code runs before your edits, and the layer you are trying to change is the same shape as the previous one, then my guess is that it may have to do with the computational graph that is formed from creating the resnet50 object. I would recommended the approach I mentioned in my edit to the other answer, but I will state it here again (note, this assumes you keep the code as it was originally):
# instantiate you encoder (repeat these steps with the decoder as well)
enc = EncoderCell()
# get the pretrained model
resnet = models.resnet50(pretrained=True)
# load the state dict into the regular conv layer
enc.conv.load_state_dict(resnet50.layer4.state_dict())
This should load the pretrained weights and biases from the resnet50 model into your conv layer, and this can be done to the decoder conv layer as well as long as they all share the same shape.
To do more testing with your mismatch error I would recommend either using a debugger or print statements in the forward() method of the models to see the shape of the tensor after each layer is applied, like so
def forward(self, input, hidden1, hidden2, hidden3, hidden4):
print(x.size())
x = self.conv1(input)
print(x.size())
hidden1 = self.rnn1(x, hidden1)
x = hidden1[0]
x = F.pixel_shuffle(x, 2)
hidden2 = self.rnn2(x, hidden2)
x = hidden2[0]
x = F.pixel_shuffle(x, 2)
hidden3 = self.rnn3(x, hidden3)
x = hidden3[0]
x = F.pixel_shuffle(x, 2)
hidden4 = self.rnn4(x, hidden4)
x = hidden4[0]
x = F.pixel_shuffle(x, 2)
x = F.tanh(self.conv2(x)) / 2
return x, hidden1, hidden2, hidden3, hidden4
and of course you can put the print statements where ever else in the forward method. I would also highly recommend a debugger; pycharm makes this quite easy, and also makes it easy to see the state of variables in scientific mode beside the python console it gives. It might be worth looking up ways to calculate size of variables after they pass through certain layers like convolutional layers. This is well understood and formulas exist to calculate the size of the dimensions based on the initial size, the filter size, stride width, and padding.

how can I remove layer in Pytorch?

I want to remove the decoder portion of the Autoencoder.
and I want to put FC in the removed part.
In addition, the encoder parts will not train with pre-learned weights.
self.encoder = nn.Sequential(
nn.Conv2d(1, 16, 3, padding=1),
nn.ReLU(True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(16, 8, 3, padding=1),
nn.ReLU(True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(8, 8, 3, padding=1),
nn.ReLU(True),
nn.MaxPool2d(kernel_size=4, stride=1),
)
self.decoder = nn.Sequential(
nn.Conv2d(8, 8, 3, padding=1),
nn.ReLU(True),
nn.ConvTranspose2d(8, 8, kernel_size=2, stride=2),
nn.Conv2d(8, 8, 3, padding=1),
nn.ReLU(True),
nn.ConvTranspose2d(8, 8, kernel_size=2, stride=2),
nn.Conv2d(8, 16, 3),
nn.ReLU(True),
nn.ConvTranspose2d(16, 16, kernel_size=2, stride=2),
nn.Conv2d(16, 1, 3, padding=1)
)
def forward(self, x):
if self.training :
x = self.encoder(x)
x = self.decoder(x)
return x
else:
x = classifier(x)
return x
is this possible?
help me...
One easy and clean solution would be to define a stand-alone network as your decoder, then replace the decoder attribute of your model with this new network after pre-training is over. Easy example below:
class sillyExample(torch.nn.Module):
def __init__(self):
super(sillyExample, self).__init__()
self.encoder = torch.nn.Linear(5, 5)
self.decoder = torch.nn.Linear(5, 10)
def forward(self, x):
return self.decoder(self.encoder(x))
test = sillyExample()
test(torch.rand(30, 5)).shape
Out: torch.Size([30, 10])
test.decoder = torch.nn.Linear(5, 20) # replace the decoder
test(torch.rand(30, 5)).shape
Out: torch.Size([30, 20])
Just make sure to re-initialize your optimizers with the updated model (or anything else that might be referencing the model's parameters).

Resources