Access accumulator value after using it in user defined function within df.widthColumn in Palantir Foundry - apache-spark

I am trying to use a customized accumulator within Palantir Foundry to aggregate Data within
a user defined function which is applied to each row of a dataframe within a statement df.withColumn(...).
From the resulting dataframe, I see, that the incrementation of the accumulator-value happens as expected. However, the value of the accumulator variable itself in the script does not change during the execution.
I see, that the Python-ID of the accumulator variable in the script differs from the Python-ID of the accumulator within the user defined function. But that might be expected...
How do I access the accumulator value which incrementation can be watched in the resulting dataframe-colun from within the calling script after the execution, as this is the information I am looking for?
from transforms.api import transform_df, Input, Output
import numpy as np
from pyspark.accumulators import AccumulatorParam
from pyspark.sql.functions import udf, struct
global accum
#transform_df(
Output("ri.foundry.main.dataset.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"),
)
def compute(ctx):
from pyspark.sql.types import StructType, StringType, IntegerType, StructField
data2 = [("James","","Smith","36636","M",3000),
("Michael","Rose","","40288","M",4000),
("Robert","","Williams","42114","M",4000),
("Maria","Anne","Jones","39192","F",4000),
("Jen","Mary","Brown","","F",-1)
]
schema = StructType([ \
StructField("firstname",StringType(),True), \
StructField("middlename",StringType(),True), \
StructField("lastname",StringType(),True), \
StructField("id", StringType(), True), \
StructField("gender", StringType(), True), \
StructField("salary", IntegerType(), True) \
])
df = ctx.spark_session.createDataFrame(data=data2, schema=schema)
####################################
class AccumulatorNumpyArray(AccumulatorParam):
def zero(self, zero: np.ndarray):
return zero
def addInPlace(self, v1, v2):
return v1 + v2
# from pyspark.context import SparkContext
# sc = SparkContext.getOrCreate()
sc = ctx.spark_session.sparkContext
shape = 3
global accum
accum = sc.accumulator(
np.zeros(shape, dtype=np.int64),
AccumulatorNumpyArray(),
)
def func(row):
global accum
accum += np.ones(shape)
return str(accum) + '_' + str(id(accum))
user_defined_function = udf(func, StringType())
new = df.withColumn("processed", user_defined_function(struct([df[col] for col in df.columns])))
new.show(2)
print(accum)
return df
results in
+---------+----------+--------+-----+------+------+--------------------+
|firstname|middlename|lastname| id|gender|salary| processed|
+---------+----------+--------+-----+------+------+--------------------+
| James| | Smith|36636| M| 3000|[1. 1. 1.]_140388...|
| Michael| Rose| |40288| M| 4000|[2. 2. 2.]_140388...|
+---------+----------+--------+-----+------+------+--------------------+
only showing top 2 rows
and
> accum
Accumulator<id=0, value=[0 0 0]>
> id(accum)
140574405092256
If the Foundry-Boiler-Plate is removed, resulting in
import numpy as np
from pyspark.accumulators import AccumulatorParam
from pyspark.sql.functions import udf, struct
from pyspark.sql.types import StructType, StringType, IntegerType, StructField
from pyspark.sql import SparkSession
from pyspark.context import SparkContext
spark = (
SparkSession.builder.appName("Python Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate()
)
# ctx = spark.sparkContext.getOrCreate()
data2 = [
("James", "", "Smith", "36636", "M", 3000),
("Michael", "Rose", "", "40288", "M", 4000),
("Robert", "", "Williams", "42114", "M", 4000),
("Maria", "Anne", "Jones", "39192", "F", 4000),
("Jen", "Mary", "Brown", "", "F", -1),
]
schema = StructType(
[
StructField("firstname", StringType(), True),
StructField("middlename", StringType(), True),
StructField("lastname", StringType(), True),
StructField("id", StringType(), True),
StructField("gender", StringType(), True),
StructField("salary", IntegerType(), True),
]
)
# df = ctx.spark_session.createDataFrame(data=data2, schema=schema)
df = spark.createDataFrame(data=data2, schema=schema)
####################################
class AccumulatorNumpyArray(AccumulatorParam):
def zero(self, zero: np.ndarray):
return zero
def addInPlace(self, v1, v2):
return v1 + v2
sc = SparkContext.getOrCreate()
shape = 3
global accum
accum = sc.accumulator(
np.zeros(shape, dtype=np.int64),
AccumulatorNumpyArray(),
)
def func(row):
global accum
accum += np.ones(shape)
return str(accum) + "_" + str(id(accum))
user_defined_function = udf(func, StringType())
new = df.withColumn(
"processed", user_defined_function(struct([df[col] for col in df.columns]))
)
new.show(2, False)
print(id(accum))
print(accum)
the output obtained within a regular Python environment with pyspark version 3.3.1 on Ubuntu meets the expectations and is
+---------+----------+--------+-----+------+------+--------------------------+
|firstname|middlename|lastname|id |gender|salary|processed |
+---------+----------+--------+-----+------+------+--------------------------+
|James | |Smith |36636|M |3000 |[1. 1. 1.]_139642682452576|
|Michael |Rose | |40288|M |4000 |[1. 1. 1.]_139642682450224|
+---------+----------+--------+-----+------+------+--------------------------+
only showing top 2 rows
140166944013424
[3. 3. 3.]

The code that runs outside of the transform is ran in a different environment than the code within your transform. When you commit, you'll be running your checks which runs the code outside the transform to generate the jobspec which is technically your executable transform. You can find these within the "details" of your dataset after the checks pass.
The logic within your transform is then detached and runs in isolation each time you hit build. The global accum you define outside the transform is never ran and doesn't exist when the code inside the compute is running.
global accum <-- runs in checks
#transform_df(
Output("ri.foundry.main.dataset.c0d4fc0c-bb1d-4c7b-86ce-a13ec6666490"),
)
def compute(ctx):
bla bla some logic <-- runs during build
The prints you are doing during your second code example, happen after the df is processed, because you are asking spark to compute with the new.show(2, false). While the print you are doing in the first example happen before the df is processed, since the compute will only happen after your return df.
If you want to try to print after your df is computed, you can use #transform(... instead of #transform_df(... and do a print after writing the dataframe contents. Should be something like this:
#transform(
output=Output("ri.foundry.main.dataset.c0d4fc0c-bb1d-4c7b-86ce-a13ec6666490"),
)
def compute(ctx, output):
df = ... some logic ...
output.write_dataframe(df) # please check the function name I think it was write_dataframe, but may be wrong
print accum

Related

how to print a "dictionary" of StringType() in the form of a table with pyspark

Hi,
The above column is part of a table that I am working with in Databricks. What I wish to do is to turn the "ecommerce" col into a table of its own. In this case, it means that I would have a new table with "detail", "products"....etc as columns. Currently "ecommerce" is a StringType.
I have tried using spark dictionary creation, tabulate and other methods but to no success.
The code that I have currently is
def ecommerce_wtchk_dlt():
df = dlt.read_stream("wtchk_dlt")
ddf = df.select(col("ecommerce"))
header = ddf[0].keys()
rows = [x.values() for x in ddf]
dddf = tabulate.tabulate(rows, header)
return dddf
Whenever I try to forcefully set the type of the ecommerce as MapType I have the error that says that since the original datasource is StringType I can only use the same one as well
I have reproduced the above and able to achieve your requirement in this case by using from_json, json_tuple and explode.
This is my sample data with the same format as yours.
Code:
from pyspark.sql import functions as F
from pyspark.sql.types import *
df2 = df.select(F.json_tuple(df["ecommerce"],"detail")).toDF("detail") \
.select(F.json_tuple(F.col("detail"),"products")).toDF("products")
print("products : ")
df2.show()
schema = ArrayType(StructType([
StructField("name", StringType()),
StructField("id", StringType()),
StructField("price", StringType()),
StructField("brand", StringType()),
StructField("category", StringType()),
StructField("variant", StringType())
]))
final_df=df2.withColumn("products", F.from_json("products", schema)).select(F.explode("products").alias("products")).select("products.*")
print("Final dataframe : ")
final_df.show()
My Result:

PySpark row to struct with specified structure

This is my initial dataframe:
columns = ["CounterpartID","Year","Month","Day","churnprobability", "deadprobability"]
data = [(1234, 2021,5,12, 0.85,0.6),(1224, 2022,6,12, 0.75,0.6),(1345, 2022,5,13, 0.8,0.2),(234, 2021,7,12, 0.9,0.8)]
from pyspark.sql.types import StructType, StructField, IntegerType, DoubleType
schema = StructType([
StructField("client_id", IntegerType(), False),
StructField("year", IntegerType(), False),
StructField("month", IntegerType(), False),
StructField("day", IntegerType(), False),
StructField("churn_probability", DoubleType(), False),
StructField("dead_probability", DoubleType(), False)
])
df = spark.createDataFrame(data=data, schema=schema)
df.printSchema()
df.show(truncate=False)
Then I do some transformations on the columns (basically, separating out the float columns into before decimals and after decimals columns) to get the intermediary dataframe.
abc = df.rdd.map(lambda x: (x[0],x[1],x[2],x[3],int(x[4]),int(x[4]%1 * pow(10,9)), int(x[5]),int(x[5]%1 * pow(10,9)) )).toDF(['client_id','year', 'month', 'day', 'churn_probability_unit', 'churn_probability_nano', 'dead_probability_unit', 'dead_probability_nano'] )
display(abc)
Below is the final desired dataframe (this is just an example of one row, but of course I'll need all the rows from the intermediary dataframe.
sjson = {"clientId": {"id": 1234 },"eventDate": {"year": 2022,"month": 8,"day": 5},"churnProbability": {"rate": {"units": "500","nanos": 780000000}},"deadProbability": {"rate": {"units": "500","nanos": 780000000}}}
df = spark.read.json(sc.parallelize([sjson])).select("clientId", "eventDate", "churnProbability", "deadProbability")
display(df)
How do I reach this end state from the intermediary state efficiently for all rows?
End goal is to use this final dataframe to write to Kafka where the schema of the topic is a form of the final desired dataframe.
I would probably eliminate the use of rdd logic (and again toDF) by using just one select from your original df:
from pyspark.sql import functions as F
defg = df.select(
F.struct(F.col('client_id').alias('id')).alias('clientId'),
F.struct('year', 'month', 'day').alias('eventDate'),
F.struct(
F.struct(
F.floor('churn_probability').alias('unit'),
(F.col('churn_probability') % 1 * 10**9).cast('long').alias('nanos')
).alias('rate')
).alias('churnProbability'),
F.struct(
F.struct(
F.floor('dead_probability').alias('unit'),
(F.col('dead_probability') % 1 * 10**9).cast('long').alias('nanos')
).alias('rate')
).alias('deadProbability'),
)
defg.show()
# +--------+-------------+----------------+----------------+
# |clientId| eventDate|churnProbability| deadProbability|
# +--------+-------------+----------------+----------------+
# | {1234}|{2021, 5, 12}|{{0, 850000000}}|{{0, 600000000}}|
# | {1224}|{2022, 6, 12}|{{0, 750000000}}|{{0, 600000000}}|
# | {1345}|{2022, 5, 13}|{{0, 800000000}}|{{0, 200000000}}|
# | {234}|{2021, 7, 12}|{{0, 900000000}}|{{0, 800000000}}|
# +--------+-------------+----------------+----------------+
So, I was able to solve this using structs , without using to_json
import pyspark.sql.functions as f
defg = abc.withColumn(
"clientId",
f.struct(
f.col("client_id").
alias("id")
)).withColumn(
"eventDate",
f.struct(
f.col("year").alias("year"),
f.col("month").alias("month"),
f.col("day").alias("day"),
)
).withColumn(
"churnProbability",
f.struct( f.struct(
f.col("churn_probability_unit").alias("unit"),
f.col("churn_probability_nano").alias("nanos")
).alias("rate")
)
).withColumn(
"deadProbability",
f.struct( f.struct(
f.col("dead_probability_unit").alias("unit"),
f.col("dead_probability_nano").alias("nanos")
).alias("rate")
)
).select ("clientId","eventDate","churnProbability", "deadProbability" )

Dataframe TypeError cannot accept object

I have list of string in python as follows :
['start_column=column123;to_3=2020-09-07 10:29:24;to_1=2020-09-07 10:31:08;to_0=2020-09-07 10:31:13;',
'start_column=column475;to_3=2020-09-07 10:29:34;']
I am trying to convert it into dataframe in following way :
schema = StructType([
StructField('Rows', ArrayType(StringType()), True)
])
rdd = sc.parallelize(test_list)
query_data = spark.createDataFrame(rdd,schema)
print(query_data.schema)
query_data.show()
I am getting following error:
TypeError: StructType can not accept object
You just need to pass that as a list while creating the dataframe as below ...
a_list = ['start_column=column123;to_3=2020-09-07 10:29:24;to_1=2020-09-07 10:31:08;to_0=2020-09-07 10:31:13;',
'start_column=column475;to_3=2020-09-07 10:29:34;']
sparkdf = spark.createDataFrame([a_list],["col1", "col2"])
sparkdf.show(truncate=False)
+--------------------------------------------------------------------------------------------------+------------------------------------------------+
|col1 |col2 |
+--------------------------------------------------------------------------------------------------+------------------------------------------------+
|start_column=column123;to_3=2020-09-07 10:29:24;to_1=2020-09-07 10:31:08;to_0=2020-09-07 10:31:13;|start_column=column475;to_3=2020-09-07 10:29:34;|
+--------------------------------------------------------------------------------------------------+------------------------------------------------+
You should use schema = StringType() because your rows contains strings rather than structs of strings.
I have two possible solutions for you.
SOLUTION 1: Assuming you wanted a dataframe with just one row
I was able to make it work by wrapping the values in test_list in Parentheses and using StringType.
v = [('start_column=column123;to_3=2020-09-07 10:29:24;to_1=2020-09-07 10:31:08;to_0=2020-09-07 10:31:13;',
'start_column=column475;to_3=2020-09-07 10:29:34;')]
schema = StructType([
StructField('col_1', StringType(), True),
StructField('col_2', StringType(), True),
])
rdd = sc.parallelize(v)
query_data = spark.createDataFrame(rdd,schema)
print(query_data.schema)
query_data.show(truncate = False)
SOLUTION 2: Assuming you wanted a dataframe with just one column
v = ['start_column=column123;to_3=2020-09-07 10:29:24;to_1=2020-09-07 10:31:08;to_0=2020-09-07 10:31:13;',
'start_column=column475;to_3=2020-09-07 10:29:34;']
from pyspark.sql.types import StringType
df = spark.createDataFrame(v, StringType())
df.show(truncate = False)

Error when returning an ArrayType of StructType from UDF (and using a single function in multiple UDFs)

(EDIT) changed field names (from foo, bar,... to name and city) because old naming was confusing
I need to use a single function in multiple UDFs and return different Structs depending on the input.
This simplified version of my implementation basically does what I am looking for:
from pyspark.sql.types import IntegerType, StructType, StringType
from pyspark.sql.functions import when, col
df = spark.createDataFrame([1, 2, 3], IntegerType()).toDF('id')
struct_one = StructType().add('name', StringType(), True)
struct_not_one = StructType().add('city', StringType(), True)
def select(id):
if id == 1:
return {'name': 'Alice'}
else:
return {'city': 'Seattle'}
one_udf = udf(select, struct_one)
not_one_udf = udf(select, struct_not_one)
df = df.withColumn('one', when((col('id') == 1), one_udf(col('id'))))\
.withColumn('not_one', when((col('id') != 1), not_one_udf(col('id'))))
display(df)
(EDIT) Output:
id one not_one
1 {"name":"Alice"} null
2 null {"city":"Seattle"}
3 null {"city":"Seattle"}
But, the same code returning an ArrayType of StructType unfortunatly fails:
from pyspark.sql.types import IntegerType, StructType, StringType, ArrayType
from pyspark.sql.functions import when, col
df = spark.createDataFrame([1, 2, 3], IntegerType()).toDF('id')
struct_one = StructType().add('name', StringType(), True)
struct_not_one = ArrayType(StructType().add('city', StringType(), True))
def select(id):
if id == 1:
return {'name': 'Alice'}
else:
return [{'city': 'Seattle'}, {'city': 'Milan'}]
one_udf = udf(select, struct_one)
not_one_udf = udf(select, struct_not_one)
df = df.withColumn('one', when((col('id') == 1), one_udf(col('id'))))\
.withColumn('not_one', when((col('id') != 1), not_one_udf(col('id'))))
display(df)
The error message is:
ValueError: Unexpected tuple 'name' with StructType
(EDIT) Desired Output would be:
id one not_one
1 {"name":"Alice"} null
2 null [{"city":"Seattle"},{"city":"Milan"}]
3 null [{"city":"Seattle"},{"city":"Milan"}]
Returning and ArrayType of other types (StringType, IntegerType,...) for example works, though.
Also returning an Array of StructType when not using a single function in multiple UDFs works:
from pyspark.sql.types import IntegerType, StructType, StringType, ArrayType
from pyspark.sql.functions import when, col
df = spark.createDataFrame([1, 2, 3], IntegerType()).toDF('id')
struct_not_one = ArrayType(StructType().add('city', StringType(), True))
def select(id):
return [{'city': 'Seattle'}, {'city': 'Milan'}]
not_one_udf = udf(select, struct_not_one)
df = df.withColumn('not_one', when((col('id') != 1), not_one_udf(col('id'))))
display(df)
(EDIT) Output:
id not_one
1 null
2 [{"city":"Seattle"},{"city":"Milan"}]
3 [{"city":"Seattle"},{"city":"Milan"}]
Why is returning an ArrayType of StructType and using multiple UDFs with one single function not working?
Thanks!
"Spark SQL (including SQL and the DataFrame and Dataset API) does not guarantee the order of evaluation of subexpressions...
Therefore, it is dangerous to rely on the side effects or order of evaluation of Boolean expressions, and the order of WHERE and HAVING clauses, since such expressions and clauses can be reordered during query optimization and planning. Specifically, if a UDF relies on short-circuiting semantics in SQL for null checking, there’s no guarantee that the null check will happen before invoking the UDF."
See Evaluation order and null checking
To keep your udf generic you could push the 'when filter' into your udf:
from pyspark.sql.types import IntegerType, StructType, StringType, ArrayType
from pyspark.sql.functions import when, col, lit
df = spark.createDataFrame([1, 2, 3], IntegerType()).toDF('id')
struct_one = StructType().add('name', StringType(), True)
struct_not_one = ArrayType(StructType().add('city', StringType(), True))
def select(id, test):
if eval(test.format(id)) is False:
return None
if id == 1:
return {'name': 'Alice'}
else:
return [{'city': 'Seattle'}, {'city': 'Milan'}]
one_udf = udf(select, struct_one)
not_one_udf = udf(select, struct_not_one)
df = df.withColumn('one', one_udf(col('id'), lit('{} == 1')))\
.withColumn('not_one', not_one_udf(col('id'), lit('{} != 1')))
display(df)

PySpark: data doesn't always conform to schema - logic to alter data

I'm new with PySpark and am working on a script, reading from .csv files.
I've explicitly defined the schema in the below & the script works perfectly...most of the time.
The issue is, on occasion, a value enters the files which does not conform to the schema - e.g. '-' might appear in an integer field & hence, we get a type error - the error is thrown when df1.show() is reached in the script.
I'm trying to think of a way to effectively say - if the value does not match the defined datatype, then replace with ''
Does anyone know if this may be possible? Any advice would be great!
from pyspark.sql import SparkSession
import pyspark.sql.functions as sqlfunc
from pyspark.sql.types import *
import argparse, sys
from pyspark.sql import *
from pyspark.sql.functions import *
from datetime import datetime
#create a context that supports hive
def create_session(appname):
spark_session = SparkSession\
.builder\
.appName(appname)\
.master('yarn')\
.config("hive.metastore.uris", "thrift://serverip:9083")\
.enableHiveSupport()\
.getOrCreate()
return spark_session
### START MAIN ###
if __name__ == '__main__':
spark_session = create_session('testing_files')
dt_now = datetime.now()
today_unixtime = long(dt_now.strftime('%s'))
today_date = datetime.fromtimestamp(today_unixtime).strftime('%Y%m%d')
twoday_unixtime = long(dt_now.strftime('%s')) - 24*60*60*2
twoday = datetime.fromtimestamp(twoday_unixtime).strftime('%Y%m%d')
hourago = long(dt_now.strftime('%s')) - 60*60*4
hrdate = datetime.fromtimestamp(hourago).strftime('%H')
schema = [\
StructField('field1', StringType(), True),\
StructField('field2',StringType(), True), \
StructField('field3',IntegerType(), True) \
]
final_structure = StructType(schema)
df1 = spark_session.read\
.option("header","false")\
.option("delimiter", "\t")\
.csv('hdfs://hdfspath/dt=%s/*/*/*' %today_date, final_structure)
usercatschema = [\
StructField('field1', StringType(), True),\
StructField('field2',StringType(), True), \
StructField('field3',StringType(), True) \
]
usercat_structure = StructType(usercatschema)
df2 = spark_session.read\
.option("header","false")\
.option("delimiter", "\t")\
.csv('hdfs://hdfspath/v0/dt=%s/*' %twoday, usercat_structure)
df1.show()
df2.show()
df1.createOrReplaceTempView("dpi")
df2.createOrReplaceTempView("usercat")
finaldf = spark_session.sql('''
SQL QUERY
''')
finaldf.coalesce(10).write.format("com.databricks.spark.csv").option("header", "true").option('sep', '\t').mode('append').save('hdfs://hdfs path')
Read it as String type and then convert to int.
df.withColumn("field3",df.field3.cast("int"))

Resources