*Repo w/ WIP code: https://github.com/jmelm93/rust-datafusion-csv-processing
Started programming with Rust 2 days ago, and have been trying to resolve this since ~3 hours into trying out Rust...
Any help would be appreciated.
My goal is to write a Dataframe from Datafusion to JSON (which will eventually be used to respond to HTTP requests in an API with the JSON string).
The DataFrame turns into an "datafusion::arrow::record_batch::RecordBatch" when you collect the data, and this data type is what I'm having trouble converting.
I've tried -
Using json::writer::record_batches_to_json_rows from Arrow, but it won't let me due to "struct datafusion::arrow::record_batch::RecordBatch and struct arrow::record_batch::RecordBatch have similar names, but are actually distinct types". Haven't been able to successfully convert the types to avoid this.
I tried during the Record Batch into a vec and pull out the headers and the values individually. I was able to get the headers out, but haven't had success with the values.
let mut header = Vec::new();
// let mut rows = Vec::new();
for record_batch in data_vec {
// get data
println!("record_batch.columns: : {:?}", record_batch.columns());
for col in record_batch.columns() {
for row in 0..col.len() {
// println!("Cow: {:?}", col);
// println!("Row: {:?}", row);
// let value = col.as_any().downcast_ref::<StringArray>().unwrap().value(row);
// rows.push(value);
}
}
// get headers
for field in record_batch.schema().fields() {
header.push(field.name().to_string());
}
};
Anyone know how to accomplish this?
The full script is below:
// datafusion examples: https://github.com/apache/arrow-datafusion/tree/master/datafusion-examples/examples
// datafusion docs: https://arrow.apache.org/datafusion/
use datafusion::prelude::*;
use datafusion::arrow::datatypes::{Schema};
use arrow::json;
// use serde::{ Deserialize };
use serde_json::to_string;
use std::sync::Arc;
use std::str;
use std::fs;
use std::ops::Deref;
type DFResult = Result<Arc<DataFrame>, datafusion::error::DataFusionError>;
struct FinalObject {
schema: Schema,
// columns: Vec<Column>,
num_rows: usize,
num_columns: usize,
}
// to allow debug logging for FinalObject
impl std::fmt::Debug for FinalObject {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// write!(f, "FinalObject {{ schema: {:?}, columns: {:?}, num_rows: {:?}, num_columns: {:?} }}",
write!(f, "FinalObject {{ schema: {:?}, num_rows: {:?}, num_columns: {:?} }}",
// self.schema, self.columns, self.num_columns, self.num_rows)
self.schema, self.num_columns, self.num_rows)
}
}
fn create_or_delete_csv_file(path: String, content: Option<String>, operation: &str) {
match operation {
"create" => {
match content {
Some(c) => fs::write(path, c.as_bytes()).expect("Problem with writing file!"),
None => println!("The content is None, no file will be created"),
}
}
"delete" => {
// Delete the csv file
fs::remove_file(path).expect("Problem with deleting file!");
}
_ => println!("Invalid operation"),
}
}
async fn read_csv_file_with_inferred_schema(file_name_string: String) -> DFResult {
// create string csv data
let csv_data_string = "heading,value\nbasic,1\ncsv,2\nhere,3".to_string();
// Create a temporary file
create_or_delete_csv_file(file_name_string.clone(), Some(csv_data_string), "create");
// Create a session context
let ctx = SessionContext::new();
// Register a lazy DataFrame using the context
let df = ctx.read_csv(file_name_string.clone(), CsvReadOptions::default()).await.expect("An error occurred while reading the CSV string");
// return the dataframe
Ok(Arc::new(df))
}
#[tokio::main]
async fn main() {
let file_name_string = "temp_file.csv".to_string();
let arc_csv_df = read_csv_file_with_inferred_schema(file_name_string.clone()).await.expect("An error occurred while reading the CSV string (funct: read_csv_file_with_inferred_schema)");
// have to use ".clone()" each time I want to use this ref
let deref_df = arc_csv_df.deref();
// print to console
deref_df.clone().show().await.expect("An error occurred while showing the CSV DataFrame");
// collect to vec
let record_batches = deref_df.clone().collect().await.expect("An error occurred while collecting the CSV DataFrame");
// println!("Data: {:?}", data);
// record_batches == <Vec<RecordBatch>>. Convert to RecordBatch
let record_batch = record_batches[0].clone();
// let json_string = to_string(&record_batch).unwrap();
// let mut writer = datafusion::json::writer::RecordBatchJsonWriter::new(vec![]);
// writer.write(&record_batch).unwrap();
// let json_rows = writer.finish();
let json_rows = json::writer::record_batches_to_json_rows(&[record_batch]);
println!("JSON: {:?}", json_rows);
// get final values from recordbatch
// https://docs.rs/arrow/latest/arrow/record_batch/struct.RecordBatch.html
// https://users.rust-lang.org/t/how-to-use-recordbatch-in-arrow-when-using-datafusion/70057/2
// https://github.com/apache/arrow-rs/blob/6.5.0/arrow/src/util/pretty.rs
// let record_batches_vec = record_batches.to_vec();
let mut header = Vec::new();
// let mut rows = Vec::new();
for record_batch in data_vec {
// get data
println!("record_batch.columns: : {:?}", record_batch.columns());
for col in record_batch.columns() {
for row in 0..col.len() {
// println!("Cow: {:?}", col);
// println!("Row: {:?}", row);
// let value = col.as_any().downcast_ref::<StringArray>().unwrap().value(row);
// rows.push(value);
}
}
// get headers
for field in record_batch.schema().fields() {
header.push(field.name().to_string());
}
};
// println!("Header: {:?}", header);
// Delete temp csv
create_or_delete_csv_file(file_name_string.clone(), None, "delete");
}
I am not sure that Datafusion is the perfect place to convert CSV string into JSON string, however here is a working version of your code:
#[tokio::main]
async fn main() {
let file_name_string = "temp_file.csv".to_string();
let csv_data_string = "heading,value\nbasic,1\ncsv,2\nhere,3".to_string();
// Create a temporary file
create_or_delete_csv_file(file_name_string.clone(), Some(csv_data_string), "create");
// Create a session context
let ctx = SessionContext::new();
// Register the csv file
ctx.register_csv("t1", &file_name_string, CsvReadOptions::new().has_header(false))
.await.unwrap();
let df = ctx.sql("SELECT * FROM t1").await.unwrap();
// collect to vec
let record_batches = df.collect().await.unwrap();
// get json rows
let json_rows = datafusion::arrow::json::writer::record_batches_to_json_rows(&record_batches[..]).unwrap();
println!("JSON: {:?}", json_rows);
// Delete temp csv
create_or_delete_csv_file(file_name_string.clone(), None, "delete");
}
If you encounter arrow and datafusion struct conflicts, use datafusion::arrow instead of just the arrow library.
Related
I have a row of a polars dataframe created using iterators reading a parquet file from this method: Iterate over rows polars rust
I have constructed a HashMap that represents an individual row and I would like to now convert that row into JSON.
This is what my code looks like so far:
use polars::prelude::*;
use std::iter::zip;
use std::{fs::File, collections::HashMap};
fn main() -> anyhow::Result<()> {
let file = File::open("0.parquet").unwrap();
let mut df = ParquetReader::new(file).finish()?;
dbg!(df.schema());
let fields = df.fields();
let columns: Vec<&String> = fields.iter().map(|x| x.name()).collect();
df.as_single_chunk_par();
let mut iters = df.iter().map(|s| s.iter()).collect::<Vec<_>>();
for _ in 0..df.height() {
let mut row = HashMap::new();
for (column, iter) in zip(&columns, &mut iters) {
let value = iter.next().expect("should have as many iterations as rows");
row.insert(column, value);
}
dbg!(&row);
let json = serde_json::to_string(&row).unwrap();
dbg!(json);
break;
}
Ok(())
}
And I have the following feature flags enabled: ["parquet", "serde", "dtype-u8", "dtype-i8", "dtype-date", "dtype-datetime"].
I am running into the following error at the serde_json::to_string(&row).unwrap() line:
thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value: Error("the enum variant AnyValue::Datetime cannot be serialized", line: 0, column: 0)', src/main.rs:47:48
I am also unable to implement my own serialized for AnyValue::DateTime because of only traits defined in the current crate can be implemented for types defined outside of the crate.
What's the best way to serialize this row into JSON?
I was able to resolve this error by using a match statement over value to change it from a Datetime to an Int64.
let value = match value {
AnyValue::Datetime(value, TimeUnit::Milliseconds, _) => AnyValue::Int64(value),
x => x
};
row.insert(column, value);
Root cause is there is no enum variant for Datetime in the impl Serialize block: https://docs.rs/polars-core/0.24.0/src/polars_core/datatypes/mod.rs.html#298
Although this code now works, it outputs data that looks like:
{'myintcolumn': {'Int64': 22342342343},
'mylistoclumn': {'List': {'datatype': 'Int32', 'name': '', 'values': []}},
'mystrcolumn': {'Utf8': 'lorem ipsum lorem ipsum'}
So you likely to be customizing the serialization here regardless of the data type.
Update: If you want to get the JSON without all of the inner nesting, I had to do a gnarly match statement:
use polars::prelude::*;
use std::iter::zip;
use std::{fs::File, collections::HashMap};
use serde_json::json;
fn main() -> anyhow::Result<()> {
let file = File::open("0.parquet").unwrap();
let mut df = ParquetReader::new(file).finish()?;
dbg!(df.schema());
let fields = df.fields();
let columns: Vec<&String> = fields.iter().map(|x| x.name()).collect();
df.as_single_chunk_par();
let mut iters = df.iter().map(|s| s.iter()).collect::<Vec<_>>();
for _ in 0..df.height() {
let mut row = HashMap::new();
for (column, iter) in zip(&columns, &mut iters) {
let value = iter.next().expect("should have as many iterations as rows");
let value = match value {
AnyValue::Null => json!(Option::<String>::None),
AnyValue::Int64(val) => json!(val),
AnyValue::Int32(val) => json!(val),
AnyValue::Int8(val) => json!(val),
AnyValue::Float32(val) => json!(val),
AnyValue::Float64(val) => json!(val),
AnyValue::Utf8(val) => json!(val),
AnyValue::List(val) => {
match val.dtype() {
DataType::Int32 => ({let vec: Vec<Option<_>> = val.i32().unwrap().into_iter().collect(); json!(vec)}),
DataType::Float32 => ({let vec: Vec<Option<_>> = val.f32().unwrap().into_iter().collect(); json!(vec)}),
DataType::Utf8 => ({let vec: Vec<Option<_>> = val.utf8().unwrap().into_iter().collect(); json!(vec)}),
DataType::UInt8 => ({let vec: Vec<Option<_>> = val.u8().unwrap().into_iter().collect(); json!(vec)}),
x => panic!("unable to parse list column: {} with value: {} and type: {:?}", column, x, x.inner_dtype())
}
},
AnyValue::Datetime(val, TimeUnit::Milliseconds, _) => json!(val),
x => panic!("unable to parse column: {} with value: {}", column, x)
};
row.insert(*column as &str, value);
}
let json = serde_json::to_string(&row).unwrap();
dbg!(json);
break;
}
Ok(())
}
I guess this is a conceptual oxymoron "peeking ahead in a LazyFrame-column" ... maybe one of you can enlighten me how to best do it.
I want to put the result of this for each date into a new column:
Ok( (next_weekday_number - current_weekday_number) == 1 )
Here is the sample code to help me find an answer:
// PLEASE be aware to add the needed feature flags in your toml file
use polars::export::arrow::temporal_conversions::date32_to_date;
use polars::prelude::*;
fn main() -> Result<()> {
let days = df!(
"date_string" => &["1900-01-01", "1900-01-02", "1900-01-03", "1900-01-04", "1900-01-05",
"1900-01-06", "1900-01-07", "1900-01-09", "1900-01-10"])?;
let options = StrpTimeOptions {
date_dtype: DataType::Date, // the result column-datatype
fmt: Some("%Y-%m-%d".into()), // the source format of the date-string
strict: false,
exact: true,
};
// convert date_string into dtype(date) and put into new column "date_type"
// we convert the days DataFrame to a LazyFrame ...
// because in my real-world example I am getting a LazyFrame
let mut new_days = days.lazy().with_column(
col("date_string")
.alias("date_type")
.str()
.strptime(options),
);
// This is what I wanted to do ... but I get a string result .. need u32
// let o = GetOutput::from_type(DataType::Date);
// new_days = new_days.with_column(
// col("date_type")
// .alias("weekday_number")
// .map(|x| Ok(x.strftime("%w").unwrap()), o.clone()),
// );
// This is the convoluted workaround
let o = GetOutput::from_type(DataType::Date);
new_days = new_days.with_column(col("date_type").alias("weekday_number").map(
|x| {
Ok(x.date()
.unwrap()
.clone()
.into_iter()
.map(|opt_name: Option<i32>| {
opt_name.map(|datum: i32| {
// println!("{:?}", datum);
date32_to_date(datum)
.format("%w")
.to_string()
.parse::<u32>()
.unwrap()
})
})
.collect::<UInt32Chunked>()
.into_series())
},
o,
));
// Here is where my challenge is ..
// I need to get the weekday_number of the following day to determine a condition
// my pseudo code:
// new_days = new_days.with_column(
// col("weekday_number")
// .alias("cold_day")
// .map(|x| Ok( (next_weekday_number - current_weekday_number) == 1 ), o.clone()),
// );
println!("{:?}", new_days.clone().collect());
Ok(())
}
Ok, I could not find a way to do everything with a LazyFrame, thus I converted the LazyFrame to an eager DataFrame and was able to process two columns at the same time.
So its working for now. Maybe someone can help me realize a solution just with a LazyFrame.
Here is the working code:
use polars::export::arrow::temporal_conversions::date32_to_date;
use polars::prelude::*;
fn main() -> Result<()> {
let days = df!(
"date_string" => &["1900-01-01", "1900-01-02", "1900-01-03", "1900-01-04", "1900-01-05",
"1900-01-06", "1900-01-07", "1900-01-09", "1900-01-10"])?;
let options = StrpTimeOptions {
date_dtype: DataType::Date, // the result column-datatype
fmt: Some("%Y-%m-%d".into()), // the source format of the date-string
strict: false,
exact: true,
};
// convert date_string into dtype(date) and put into new column "date_type"
// we convert the days DataFrame to a LazyFrame ...
// because in my real-world example I am getting a LazyFrame
let mut new_days_lf = days.lazy().with_column(
col("date_string")
.alias("date_type")
.str()
.strptime(options),
);
// Getting the weekday as a number:
// This is what I wanted to do ... but I get a string result .. need u32
// let o = GetOutput::from_type(DataType::Date);
// new_days_lf = new_days_lf.with_column(
// col("date_type")
// .alias("weekday_number")
// .map(|x| Ok(x.strftime("%w").unwrap()), o.clone()),
// );
// This is the convoluted workaround for getting the weekday as a number
let o = GetOutput::from_type(DataType::Date);
new_days_lf = new_days_lf.with_column(col("date_type").alias("weekday_number").map(
|x| {
Ok(x.date()
.unwrap()
.clone()
.into_iter()
.map(|opt_name: Option<i32>| {
opt_name.map(|datum: i32| {
// println!("{:?}", datum);
date32_to_date(datum)
.format("%w")
.to_string()
.parse::<u32>()
.unwrap()
})
})
.collect::<UInt32Chunked>()
.into_series())
},
o,
));
// The "peek" ==> add a shifted column
new_days_lf = new_days_lf.with_column(
col("weekday_number")
.shift_and_fill(-1, 9999)
.alias("next_weekday_number"),
);
// now we convert the LazyFrame into a normal DataFrame for further processing:
let mut new_days_df = new_days_lf.collect()?;
// convert the column to a series
// to get a column by name we need to collect the LazyFrame into a normal DataFrame
let col1 = new_days_df.column("weekday_number")?;
// convert the column to a series
let col2 = new_days_df.column("next_weekday_number")?;
// now I can use series-arithmetics
let diff = col2 - col1;
// create a bool column based on "element == 2"
// add bool column to DataFrame
new_days_df.replace_or_add("weekday diff eq(2)", diff.equal(2)?.into_series())?;
println!("{:?}", new_days_df);
Ok(())
}
I have a function that receives a list of ids and then selects them from a database. I'm passing in a Vec and I found this issue https://github.com/rusqlite/rusqlite/issues/430 which linked to here https://github.com/rusqlite/rusqlite/blob/master/src/vtab/array.rs#L18 and it says // Note: A Rc<Vec<Value>> must be used as the parameter.
I cannot figure out how to convert this Vec to Rc<Vec> is a way that does not produce a compile error. I tried the following:
let values = std::rc::Rc::new(ids.into_iter().copied().map(String::from).collect::<Vec<String>>());
let values = std::rc::Rc::from(ids.into_iter().map(|item| item.to_string()).collect::<Vec<String>>());
let values = std::rc::Rc::from(&ids);
All 3 give the same error with some variation of this part Vec<Rc<Vecstd::string::String>>
the trait bound `Vec<Rc<Vec<std::string::String>>>: ToSql` is not satisfied the following implementations were found: <Vec<u8> as ToSql> required for the cast to the object type `dyn ToSql`
How can I convert this so it comes out as Rc<Vec> and not Vec<Rc<Vec>>
My code is here
fn table_data_to_table(ids: &Vec<String>) -> Vec<data::Item> {
let db_connection = rusqlite::Connection::open("data.sqlite")
.expect("Cannot connect to database.");
let values = std::rc::Rc::new(ids.into_iter().copied().map(String::from).collect::<Vec<String>>());
let mut statement = db_connection
.prepare("select * from item where id in rarray(?);")
.expect("Failed to prepare query.");
let mut results = statement
.query_map(rusqlite::params![vec![values]], |row| {
Ok(database::ItemData {
id: row.get(0)?,
name: row.get(1)?,
time_tp_prepare: row.get(2)?
})
});
match results {
Ok(rows) => {
let collection: rusqlite::Result<Vec<database::ItemData>> = rows.collect();
match collection {
Ok(items) => {
items.iter().map(|item_data| data::Item {
id: item_data.id,
name: item_data.name,
time_to_prepare: item_data.time_tp_prepare
}).collect()
},
Err(_) => Vec::new(),
}
},
Err(_) => Vec::new()
}
}
Looking at the example you linked your error is in not passing the Rc directly:
.query_map(rusqlite::params![vec![values]], |row| {
vs
.query_map([values], |row| {
I have an actix web service and would like to parse the contents of a multipart field while streaming with async-gcode and in addition store the contents e.g. in a database.
However, I have no clue how to feed in the stream to the Parser and at the same time collect the bytes into a Vec<u8> or a String.
The first problem I face is that field is a stream of actix::web::Bytes and not of u8.
#[post("/upload")]
pub async fn upload_job(
mut payload: Multipart,
) -> Result<HttpResponse, Error> {
let mut contents : Vec<u8> = Vec::new();
while let Ok(Some(mut field)) = payload.try_next().await {
let content_disp = field.content_disposition().unwrap();
match content_disp.get_name().unwrap() {
"file" => {
while let Some(chunk) = field.next().await {
contents.append(&mut chunk.unwrap().to_vec());
// already parse the contents
// and additionally store contents somewhere
}
}
_ => (),
}
}
Ok(HttpResponse::Ok().finish())
}
Any hint or suggestion is very much appreciated.
One of the options is to wrap field in a struct and implement Stream trait for it.
use actix_web::{HttpRequest, HttpResponse, Error};
use futures_util::stream::Stream;
use std::pin::Pin;
use actix_multipart::{Multipart, Field};
use futures::stream::{self, StreamExt};
use futures_util::TryStreamExt;
use std::task::{Context, Poll};
use async_gcode::{Parser, Error as PError};
use bytes::BytesMut;
use std::cell::RefCell;
pub struct Wrapper {
field: Field,
buffer: RefCell<BytesMut>,
index: usize,
}
impl Wrapper {
pub fn new(field: Field, buffer: RefCell<BytesMut>) -> Self {
buffer.borrow_mut().truncate(0);
Wrapper {
field,
buffer,
index: 0
}
}
}
impl Stream for Wrapper {
type Item = Result<u8, PError>;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<u8, PError>>> {
if self.index == self.buffer.borrow().len() {
match Pin::new(&mut self.field).poll_next(cx) {
Poll::Ready(Some(Ok(chunk))) => self.buffer.get_mut().extend_from_slice(&chunk),
Poll::Pending => return Poll::Pending,
Poll::Ready(None) => return Poll::Ready(None),
Poll::Ready(Some(Err(_))) => return Poll::Ready(Some(Err(PError::BadNumberFormat/* ??? */)))
};
} else {
let b = self.buffer.borrow()[self.index];
self.index += 1;
return Poll::Ready(Some(Ok(b)));
}
Poll::Ready(None)
}
}
#[post("/upload")]
pub async fn upload_job(
mut payload: Multipart,
) -> Result<HttpResponse, Error> {
while let Ok(Some(field)) = payload.try_next().await {
let content_disp = field.content_disposition().unwrap();
match content_disp.get_name().unwrap() {
"file" => {
let mut contents: RefCell<BytesMut> = RefCell::new(BytesMut::new());
let mut w = Wrapper::new(field, contents.clone());
let mut p = Parser::new(w);
while let Some(res) = p.next().await {
// Do something with results
};
// Do something with the buffer
let a = contents.get_mut()[0];
}
_ => (),
}
}
Ok(HttpResponse::Ok().finish())
}
Copying the Bytes from the Field won't be necessary when
Bytes::try_unsplit will be implemented. (https://github.com/tokio-rs/bytes/issues/287)
The answer from dmitryvm (thanks for your effort) showed me that there are actually two problems. At first, flatten the Bytes into u8's and, secondly, to "split" the stream into a buffer for later storage and the async-gcode parser.
This shows how I solved it:
#[post("/upload")]
pub async fn upload_job(
mut payload: Multipart,
) -> Result<HttpResponse, Error> {
let mut contents : Vec<u8> = Vec::new();
while let Ok(Some(mut field)) = payload.try_next().await {
let content_disp = field.content_disposition().unwrap();
match content_disp.get_name().unwrap() {
"file" => {
let field_stream = field
.map_err(|_| async_gcode::Error::BadNumberFormat) // Translate error
.map_ok(|y| { // Translate Bytes into stream with Vec<u8>
contents.extend_from_slice(&y); // Copy and store for later usage
stream::iter(y).map(Result::<_, async_gcode::Error>::Ok)
})
.try_flatten(); // Flatten the streams of u8's
let mut parser = Parser::new(field_stream);
while let Some(gcode) = parser.next().await {
// Process result from parser
}
}
_ => (),
}
}
Ok(HttpResponse::Ok().finish())
}
I'm trying to build a basic web crawler in Rust, which I'm trying to port to html5ever. As of right now, I have a function with a struct inside that is supposed to return a Vec<String>. It gets this Vec from the struct in the return statement. Why does it always return an empty vector? (Does it have anything to do with the lifetime parameters?)
fn find_urls_in_html<'a>(
original_url: &Url,
raw_html: String,
fetched_cache: &Vec<String>,
) -> Vec<String> {
#[derive(Clone)]
struct Sink<'a> {
original_url: &'a Url,
returned_vec: Vec<String>,
fetched_cache: &'a Vec<String>,
}
impl<'a> TokenSink for Sink<'a> {
type Handle = ();
fn process_token(&mut self, token: Token, _line_number: u64) -> TokenSinkResult<()> {
trace!("token {:?}", token);
match token {
TagToken(tag) => {
if tag.kind == StartTag && tag.attrs.len() != 0 {
let _attribute_name = get_attribute_for_elem(&tag.name);
if _attribute_name == None {
return TokenSinkResult::Continue;
}
let attribute_name = _attribute_name.unwrap();
for attribute in &tag.attrs {
if &attribute.name.local != attribute_name {
continue;
}
trace!("element {:?} found", tag);
add_urls_to_vec(
repair_suggested_url(
self.original_url,
(&attribute.name.local, &attribute.value),
),
&mut self.returned_vec,
&self.fetched_cache,
);
}
}
}
ParseError(error) => {
warn!("error parsing html for {}: {:?}", self.original_url, error);
}
_ => {}
}
return TokenSinkResult::Continue;
}
}
let html = Sink {
original_url: original_url,
returned_vec: Vec::new(),
fetched_cache: fetched_cache,
};
let mut byte_tendril = ByteTendril::new();
{
let tendril_push_result = byte_tendril.try_push_bytes(&raw_html.into_bytes());
if tendril_push_result.is_err() {
warn!("error pushing bytes to tendril: {:?}", tendril_push_result);
return Vec::new();
}
}
let mut queue = BufferQueue::new();
queue.push_back(byte_tendril.try_reinterpret().unwrap());
let mut tok = Tokenizer::new(html.clone(), std::default::Default::default()); // default default! default?
let feed = tok.feed(&mut queue);
return html.returned_vec;
}
The output ends with no warning (and a panic, caused by another function due to this being empty). Can anyone help me figure out what's going on?
Thanks in advance.
When I initialize the Tokenizer, I use:
let mut tok = Tokenizer::new(html.clone(), std::default::Default::default());
The problem is that I'm telling the Tokenizer to use html.clone() instead of html. As such, it is writing returned_vec to the cloned object, not html. Changing a few things, such as using a variable with mutable references, fixes this problem.