Limit cores per Apache Spark job - apache-spark

I have a dataset for which I'd like to run multiple jobs for in parallel.
I do this by launching each action in its own thread to get multiple Spark jobs per Spark application like the docs say.
Now the task I'm running doesn't benefit endlessly from throwing more cores at it - at like 50 cores or so the gain of adding more resources is quite minimal.
So for example if I have 2 jobs and 100 cores I'd like to run both jobs in parallel each of them only occupying 50 cores at max to get faster results.
One thing I could probably do is to set the amount of partitions to 50 so the jobs could only spawn 50 tasks(?). But apparently there are some performance benefits of having more partitions than available cores to get a better overall utilization.
But other than that I didn't spot anything useful in the docs to limit the resources per Apache Spark job inside one application. (I'd like to avoid spawning multiple applications to split up the executors).
Is there any good way to do this?

Perhaps asking Spark driver to use fair scheduling is the most appropriate solution in your case.
Starting in Spark 0.8, it is also possible to configure fair sharing between jobs. Under fair sharing, Spark assigns tasks between jobs in a “round robin” fashion, so that all jobs get a roughly equal share of cluster resources. This means that short jobs submitted while a long job is running can start receiving resources right away and still get good response times, without waiting for the long job to finish. This mode is best for multi-user settings.
There is also a concept of pools, but I've not used them, perhaps that gives you some more flexibility on top of fair scheduling.
Seems like conflicting requirements with no silver bullet.
parallelize as much as possible.
limit any one job from hogging resources IF (and only if) another job is running as well.
So:
if you increase number of partitions then you'll address #1 but not #2.
if you specify spark.cores.max then you'll address #2 but not #1.
if you do both (more partitions and limit spark.cores.max) then you'll address #2 but not #1.
If you only increase number of partitions then only thing you're risking is that a long running big job will delay the completion/execution of some smaller jobs, though overall it'll take the same amount of time to run two jobs on given hardware in any order as long as you're not restricting concurrency (spark.cores.max).
In general I would stay away from restricting concurrency (spark.cores.max).
Bottom line, IMO
don't touch spark.cores.max.
increase partitions if you're not using all your cores.
use fair scheduling
if you have strict latency/response-time requirements then use separate auto-scaling clusters for long running and short running jobs

Related

Can Spark executor be enabled for multithreading more than CPU cores?

I understand if executor-cores is set to more than 1, then the executor will run in parallel. However, from my experience, the number of parallel processes in the executor is always equal to the number of CPUs in the executor.
For example, suppose I have a machine with 48 cores and set executor-cores to 4, and then there will be 12 executors.
What we need is to run 8 threads or more for each executor (so 2 or more threads per CPU). The reason is that the task is quite light weight and CPU usage is quite low around 10%, so we want to boost CPU usage through multiple threads per CPU.
So asking if we could possibly achieve this in the Spark configuration. Thanks a lot!
Spark executors are processing tasks, which are derived from the execution plan/code and partitions of the dataframe. Each core on an executor is always processing only one task, so each executor only get the number of tasks at most the amount of cores. Having more tasks in one executor as you are asking for is not possible.
You should look for code changes, minimize amount of shuffles (no inner joins; use windows instead) and check out for skew in your data leading to non-uniformly distributed partition sizing (dataframe partitions, not storage partitions).
WARNING:
If you are however alone on your cluster and you do not want to change your code, you can change the YARN settings for the server and represent it with more than 48 cores, even though there are just 48. This can lead to severe instability of the system, since executors are now sharing CPUs. (And your OS also needs CPU power.)
This answer is meant as a complement to #Telijas' answer, because in general I agree with it. It's just to give that tiny bit of extra information.
There are some configuration parameters in which you can set the number of thread for certain parts of Spark. There is, for example, a section in the Spark docs that discusses some of them (for all of this I'm looking at the latest Spark version at the time of writing this post: version 3.3.1):
Depending on jobs and cluster configurations, we can set number of threads in several places in Spark to utilize available resources efficiently to get better performance. Prior to Spark 3.0, these thread configurations apply to all roles of Spark, such as driver, executor, worker and master. From Spark 3.0, we can configure threads in finer granularity starting from driver and executor. Take RPC module as example in below table. For other modules, like shuffle, just replace “rpc” with “shuffle” in the property names except spark.{driver|executor}.rpc.netty.dispatcher.numThreads, which is only for RPC module.
Property Name
Default
Meaning
Since Version
spark.{driver
executor}.rpc.io.serverThreads
Fall back on spark.rpc.io.serverThreads
Number of threads used in the server thread pool
spark.{driver
executor}.rpc.io.clientThreads
Fall back on spark.rpc.io.clientThreads
Number of threads used in the client thread pool
spark.{driver
executor}.rpc.netty.dispatcher.numThreads
Fall back on spark.rpc.netty.dispatcher.numThreads
Number of threads used in RPC message dispatcher thread pool
Then here follows a (non-exhaustive in no particular order, just been looking through the source code) list of some other number-of-thread-related configuration parameters:
spark.sql.streaming.fileSource.cleaner.numThreads
spark.storage.decommission.shuffleBlocks.maxThreads
spark.shuffle.mapOutput.dispatcher.numThreads
spark.shuffle.push.numPushThreads
spark.shuffle.push.merge.finalizeThreads
spark.rpc.connect.threads
spark.rpc.io.threads
spark.rpc.netty.dispatcher.numThreads (will be overridden by the driver/executor-specific ones from the table above)
spark.resultGetter.threads
spark.files.io.threads
I didn't add the meaning of these parameters to this answer because that's a different question and quite "Googleable". This is just meant as an extra bit of info.

How do I make my Spark job run faster using executors?

I know my code is free from antipatterns since I don't have any warnings in my Authoring code editor, so I know my code is doing PySpark operations that are distributed and scalable.
My current job has 2 executors assigned to it with 2 cores each, and it runs with task parallelism of 16 as seen on the Spark Details page.
How do I make this job run faster?
Your Executors are the pieces of Spark infrastructure assigned to 'execute' your work. As such, the more of these 'workers' you have, the more work you are able to do in parallel and the faster your job will be.
There's a limit to the amount your job will increase in speed however, and this is a function of the max number of tasks in your stages. Note: with AQE, your max number of tasks will increase as you increase your executor count, so you will notice the task counts increasing up to a certain point.
For instance, if my data scale is such that I only ever have a maximum of 8 tasks (let's assume AQE is controlling this), assigning an executor count to run more than 8 tasks will waste resources and won't increase your job speed (see above note that AQE may adjust your task counts as you add executors since it's detecting that more work can be run in parallel).
The job defaults in most Foundry environments are 2 executors with 2 cores each, and 1 core per task. This means your job is capable of running 4 cores at a time, which means 4 tasks.
This means if your max task counts per stage in your job is 4, you won't benefit from boosting your number of executors. If, however, you observe your stages have, for instance, 16 tasks, then you can choose to increase the number of executors in your job as such:
16 max tasks, 1 core per task. -> 16 cores needed.
2 cores per executor -> 8 executors max.
We could therefore jump this example job up to 8 executors for maximum performance.
For the original question, you would bump the number of executors to 8 for maximum performance, assuming AQE hasn't increased your task counts following.
When AQE re-examines your job and your new count of Executors, it will detect that more tasks can be run in parallel and will therefore increase your task counts to try to match the infrastructure. However, when it does this, you might end up with tasks that are smaller than you would like.
The way AQE decides how big to make the tasks (and therefore how many tasks it will run with) is based on the setting spark.sql.adaptive.advisoryPartitionSizeInBytes and the total number of cores available in your job. If you have more cores than would be worth parallelizing (i.e. the shuffle partitions are too small), then these small partitions will be coalesced into a fewer count which will mean you then have the same wasted executor problem without AQE.
AQE will do the best it can with the executor counts you've given it, so you may see it get faster and faster with more executors up to a point. At the point more executors doesn't mean a faster job, this is because your partition sizes are too small to be worth splitting into smaller tasks, and you've started wasting executors

Spark not using all CPUs available

I am running a query using Hive on Spark which is exhibiting some strange behavior. I've run it multiple times and observed the same behavior. The query:
reads from a large Hive external table
Spark creates about ~990,000 tasks
runs in a YARN queue with > 2900 CPUs available
uses 700 executors with 4 CPUs per executor
All is well at the start of the job. After ~1.5 hours of 2800 CPUs cranking, the job is ~80% complete (800k/990k tasks). From there, things start to nosedive: Spark stops using all of the CPUs available to it to work on tasks. With ~190k tasks to go, Spark will gradually drop from using 2800 CPUs to double digits (usually bottoming out around 20 total CPUs). This makes the last 190k tasks take significantly longer to finish than the previous 800k.
I could see as the job got very close to completing that Spark would be unable to parallelize a small amount of remaining tasks across a large number of CPUs. But with 190k tasks left to be started, it seems way too early for that.
Things I've checked:
No other job is pre-empting its resources in YARN. (In addition, if this were the case, I would expect the job to randomly lose/regain resources, instead of predictably losing steam at the 80% mark).
This occurs whether dynamic allocation is enabled or disabled. If disabled, Spark has all 2800 CPUs available for the entire run time of the job - it just doesn't use them. If enabled, Spark does spin down executors as it decides it no longer needs them.
If data skew were the issue, I could see some tasks taking longer than others to finish. But it doesn't explain why Spark wouldn't be using idle CPUs to start on the backlog of tasks still to go.
Does anyone have any advice?
For posterity, this answer from Travis Hegner contained the answer.
Setting spark.locality.wait=0s fixes this issue. I'm also not sure why a 3 second wait causes such a pile up in Spark's ability to schedule tasks, but setting to 0 makes the job run extremely well.

Number of Executor Cores and benefits or otherwise - Spark

Some run-time clarifications are requested.
In a thread elsewhere I read, it was stated that a Spark Executor should only have a single Core allocated. However, I wonder if this is really always true. Reading the various SO-questions and the likes of, as well as Karau, Wendell et al, it is clear that there are equal and opposite experts who state one should in some cases specify more Cores per Executor, but the discussion tends to be more technical than functional. That is to say, functional examples are lacking.
My understanding is that a Partition of an RDD or DF, DS, is serviced by a single Executor. Fine, no issue, makes perfect sense. So, how can the Partition benefit from multiple Cores?
If I have a map followed by, say a, filter, these are not two Tasks that can be interleaved - as in what Informatica does, as my understanding is they are fused together. This being so, then what is an example of benefit from an assigned Executor running more Cores?
From JL: In other (more technical) words, a Task is a computation on the records in a RDD partition in a Stage of a RDD in a Spark Job. What does it mean functionally speaking, in practice?
Moreover, can Executor be allocated if not all Cores can be acquired? I presume there is a wait period and that after a while it may be allocated in a more limited capacity. True?
From a highly rated answer on SO, What is a task in Spark? How does the Spark worker execute the jar file?, the following is stated: When you create the SparkContext, each worker starts an executor. From another SO question: When a SparkContext is created, each worker node starts an executor.
Not sure I follow these assertions. If Spark does not know the number of partitions etc. in advance, why allocate Executors so early?
I ask this, as even this excellent post How are stages split into tasks in Spark? does not give a practical example of multiple Cores per Executor. I can follow the post clearly and it fits in with my understanding of 1 Core per Executor.
My understanding is that a Partition (...) serviced by a single Executor.
That's correct, however the opposite is not true - a single executor can handle multiple partitions / tasks across multiple stages or even multiple RDDs).
then what is an example of benefit from an assigned Executor running more Cores?
First and foremost processing multiple tasks at the same time. Since each executor is a separate JVM, which is a relatively heavy process, it might preferable to keep only instance for a number of threads. Additionally it can provide further advantages, like exposing shared memory that can be used across multiple tasks (for example to store broadcast variables).
Secondary application is applying multiple threads to a single partition when user invokes multi-threaded code. That's however not something that is done by default (Number of CPUs per Task in Spark)
See also What are the benefits of running multiple Spark tasks in the same JVM?
If Spark does not know the number of partitions etc. in advance, why allocate Executors so early?
Pretty much by extension of the points made above - executors are not created to handle specific task / partition. There are long running processes, and as long as dynamic allocation is not enabled, there are intended to last for the full lifetime of the corresponding application / driver (preemption or failures, as well as already mentioned dynamic allocation, can affect that, but that's the basic model).

what factors affect how many spark job concurrently

We recently have set up the Spark Job Server to which the spark jobs are submitted.But we found out that our 20 nodes(8 cores/128G Memory per node) spark cluster can only afford 10 spark jobs running concurrently.
Can someone share some detailed info about what factors would actually affect how many spark jobs can be run concurrently? How can we tune the conf so that we can take full advantage of the cluster?
Question is missing some context, but first - it seems like Spark Job Server limits the number of concurrent jobs (unlike Spark itself, which puts a limit on number of tasks, not jobs):
From application.conf
# Number of jobs that can be run simultaneously per context
# If not set, defaults to number of cores on machine where jobserver is running
max-jobs-per-context = 8
If that's not the issue (you set the limit higher, or are using more than one context), then the total number of cores in the cluster (8*20 = 160) is the maximum number of concurrent tasks. If each of your jobs creates 16 tasks, Spark would queue the next incoming job waiting for CPUs to be available.
Spark creates a task per partition of the input data, and the number of partitions is decided according to the partitioning of the input on disk, or by calling repartition or coalesce on the RDD/DataFrame to manually change the partitioning. Some other actions that operate on more than one RDD (e.g. union) may also change the number of partitions.
Some things that could limit the parallelism that you're seeing:
If your job consists of only map operations (or other shuffle-less operations), it will be limited to the number of partitions of data you have. So even if you have 20 executors, if you have 10 partitions of data, it will only spawn 10 task (unless the data is splittable, in something like parquet, LZO indexed text, etc).
If you're performing a take() operation (without a shuffle), it performs an exponential take, using only one task and then growing until it collects enough data to satisfy the take operation. (Another question similar to this)
Can you share more about your workflow? That would help us diagnose it.

Resources