how to recognize some special sound - audio

how to compare the mic stream data with wave file data to get if it's mixed in the stream data
I'm using pyaudio and fft to get audio frequency data frames, are there any libraries for audio recognition? I do not need speech detection, just detections of some sound saved in files?

Related

does converting from mulaw to linear impact audio quality?

I want to change audio encoding from mulaw to linear in order to use a linear speech recognition model from Google.
I'm using a telephony channel, so audio is encoded in mulaw, 8bits, 8000Hz.
When I use Google Mulaw model, there are some issue with recognizing some short single words -> basically they are not recognized at all -> API returns None
I was wondering if it is a good practise to change the encoding for Linear or Flac?
I already did it, but I cannot really measure the degree of this improvement.
It is always best practice to use either LINEAR16 for headerless audio data or FLAC for headered audio data. They both provide lossless codec. It is good practice to set the sampling rate to 16000 Hz otherwise you can set the sample_rate_hertz to match the native sample rate of the audio source (instead of re-sampling). Since Google Speech to Text API provides various ways to improve the audio quality, you can use World Level Confidence to measure the accuracy for response.
Ideally the audio would be recorded to start with using lossless codec like linear16 ot flac. But once you have it in format like mulaw transcoding it before sending to Google speech-to-text is not helpful.
Consider using model=phone_call and use_enhanced=true for better telephony quality.
For quick experimentation you can use STT UI https://cloud.google.com/speech-to-text/docs/ui-overview.

What data should I write to SDL audio callback buffer?

I am learning how to generate wave audio by using SDL2.0.
When I init the SDL audio, it asks me to provide a SDL_AudioFormat which specifies the audio format, and a callback function which is called when the audio system needs more data.
There are so many audio formats from SDL Doc, but no more information about what actual data I should write to the callback buffer.
I tested these formats:
float with Sine: (-1,1)
S8(signed byte) with square wave: [-128, 127]
U16(unsigned short): [-32768, 32767]
All of them worked.
The question is that I don't know what exactly these audio formats mean.
Can somebody give me some information about it?

How to compare / match two non-identical sound clips

I need to take short sound samples every 5 seconds, and then upload these to our cloud server.
I then need to find a way to compare / check if that sample is part of a full long audio file.
The samples will be recorded from a phones microphone, so they will indeed not be exact.
I know this topic can get quite technical and complex, but I am sure there must be some libraries or online services that can assist in this complex audio matching / pairing.
One idea was to use a audio to text conversion service and then do matching based on the actual dialog. However this does not feel efficient to me. Where as matching based on actual sound frequencies or patterns would be a lot more efficient.
I know there are services out there such as Shazam that do this type of audio matching. However I would imagine their services are all propriety.
Some factors that could influence it:
Both audio samples with be timestamped. So we donot have to search through the entire sound clip.
To give you traction on getting an answer you need to focus on an answerable question where you have done battle and show your code
Off top of my head I would walk across the audio to pluck out a bucket of several samples ... then slide your bucket across several samples and perform another bucket pluck operation ... allow each bucket to contain overlap samples also contained in previous bucket as well as next bucket ... less samples quicker computation more samples greater accuracy to an extent YMMV
... feed each bucket into a Fourier Transform to render the time domain input audio into its frequency domain counterpart ... record into a database salient attributes of the FFT of each bucket like what are the X frequencies having most energy (greatest magnitude on your FFT)
... also perhaps store the standard deviation of those top X frequencies with respect to their energy (how disperse are those frequencies) ... define additional such attributes as needed ... for such a frequency domain approach to work you need relatively few samples in each bucket since FFT works on periodic time series data so if you feed it 500 milliseconds of complex audio like speech or music you no longer have periodic audio, instead you have mush
Then once all existing audio has been sent through above processing do same to your live new audio then identify what prior audio contains most similar sequence of buckets matching your current audio input ... use a Bayesian approach so your guesses have probabilistic weights attached which lend themselves to real-time updates
Sounds like a very cool project good luck ... here are some audio fingerprint resources
does audio clip A appear in audio file B
Detecting audio inside audio [Audio Recognition]
Detecting audio inside audio [Audio Recognition]
Detecting a specific pattern from a FFT in Arduino
Detecting a specific pattern from a FFT in Arduino
Audio Fingerprinting using the AudioContext API
https://news.ycombinator.com/item?id=21436414
https://iq.opengenus.org/audio-fingerprinting/
Chromaprint is the core component of the AcoustID project.
It's a client-side library that implements a custom algorithm for extracting fingerprints from any audio source
https://acoustid.org/chromaprint
Detecting a specific pattern from a FFT
Detecting a specific pattern from a FFT in Arduino
Audio landmark fingerprinting as a Node Stream module - nodejs converts a PCM audio signal into a series of audio fingerprints.
https://github.com/adblockradio/stream-audio-fingerprint
SO followup
How to compare / match two non-identical sound clips
How to compare / match two non-identical sound clips
Audio fingerprinting and recognition in Python
https://github.com/worldveil/dejavu
Audio Fingerprinting with Python and Numpy
http://willdrevo.com/fingerprinting-and-audio-recognition-with-python/
MusicBrainz: an open music encyclopedia (musicbrainz.org)
https://news.ycombinator.com/item?id=14478515
https://acoustid.org/chromaprint
How does Chromaprint work?
https://oxygene.sk/2011/01/how-does-chromaprint-work/
https://acoustid.org/
MusicBrainz is an open music encyclopedia that collects music metadata and makes it available to the public.
https://musicbrainz.org/
Chromaprint is the core component of the AcoustID project.
It's a client-side library that implements a custom algorithm for extracting fingerprints from any audio source
https://acoustid.org/chromaprint
Audio Matching (Audio Fingerprinting)
Is it possible to compare two similar songs given their wav files?
Is it possible to compare two similar songs given their wav files?
audio hash
https://en.wikipedia.org/wiki/Hash_function#Finding_similar_records
audio fingerprint
https://encrypted.google.com/search?hl=en&pws=0&q=python+audio+fingerprinting
ACRCloud
https://www.acrcloud.com/
How to recognize a music sample using Python and Gracenote?
Audio landmark fingerprinting as a Node Stream module - nodejs converts a PCM audio signal into a series of audio fingerprints.
https://github.com/adblockradio/stream-audio-fingerprint

Watson Speech To Text service works faster for which type of audio file?

I have tried the Watson Speech to Text API for MP3 as well as WAV files. As per my observation, the same length of audio takes less time if its given in MP3 format as compared to WAV. 10 consecutive API calls with different audios took on an average 8.7 seconds for MP3 files. On the other hand the same input in WAV format took average 11.1 seconds. Does the service response time depend on the file type? Which file type is recommended to use to obtain the results faster?
Different encoding formats have different bitrates. mp3 and opus are lossy compression formats (although suitable for speech recognition when bitrates are not too low) so they offer the lowest bitrates. If you need to push less bytes over the network that is typically better for latency, so depending on your network speed you can see shorter processing times when using encoding with lower bitrates.
However, regarding the actual speech recognition process (ignoring the data transfer over the network) all encodings are equally fast since before the recognition starts all the audio is uncompressed, if necessary, and converted to the sampling rate of the target model (broadband or narrowband).

How does an audio converter work?

I currently have the idea to code a small audio converter (e.g. FLAC to MP3 or m4a format) application in C# or Python but my problem is I do not know at all how audio conversion works.
After a research, I heard about Analog-to-digital / Digital-to-analog converter but I guess it would be a Digital-to-digital or something like that isn't it ?
If someone could precisely explain how it works, it would be greatly appreciated.
Thanks.
digital audio is called PCM which is the raw audio format fundamental to any audio processing system ... its uncompressed ... just a series of integers representing the height of the audio curve for each sample of the curve (the Y axis where time is the X axis along this curve)
... this PCM audio can be compressed using some codec then bundled inside a container often together with video or meta data channels ... so to convert audio from A to B you would first need to understand the container spec as well as the compressed audio codec so you can decompress audio A into PCM format ... then do the reverse ... compress the PCM into codec of B then bundle it into the container of B
Before venturing further into this I suggest you master the art of WAVE audio files ... beauty of WAVE is that its just a 44 byte header followed by the uncompressed integers of the audio curve ... write some code to read a WAVE file then parse the header (identify bit depth, sample rate, channel count, endianness) to enable you to iterate across each audio sample for each channel ... prove that its working by sending your bytes into an output WAVE file ... diff input WAVE against output WAVE as they should be identical ... once mastered you are ready to venture into your above stated goal ... do not skip over groking notion of interleaving stereo audio as well as spreading out a single audio sample which has a bit depth of 16 bits across two bytes of storage and the reverse namely stitching together multiple bytes into a single integer with a bit depth of 16, 24 or even 32 bits while keeping endianness squared away ... this may sound scary at first however all necessary details are on the net as its how I taught myself this level of detail
modern audio compression algorithms leverage knowledge of how people perceive sound to discard information which is indiscernible ( lossy ) as opposed to lossless algorithms which retain all the informational load of the source ... opus (http://opus-codec.org/) is a current favorite codec untainted by patents and is open source

Resources