I am working on a project of sound source localization and want to lit an individual ws2812 Led in the direction of the sound source.
I came across an expansion software package x-cube-memsmic1 (https://www.st.com/en/embedded-software/x-cube-memsmic1.html) which uses Acoustic SL library to estimate the angle of the sound source and send the angle along with some other things to PC via USB. The description says that the audio_application.c and usbd_audio_if.c contains some functions to get the angle from the source and send it.
Now I don't know which function does this and how?
Can someone tell me how can I get that specific function so I can put it in main loop?
Thanks
Viki
#include "audio_application.h"
#include "acoustic_sl.h"
uint16_t PDM_Buffer[((((AUDIO_IN_CHANNELS * AUDIO_IN_SAMPLING_FREQUENCY) / 1000) * MAX_DECIMATION_FACTOR) / 16)* N_MS ];
/* Private variables ---------------------------------------------------------*/
/*Handler and Config structure for Source Localization*/
AcousticSL_Handler_t libSoundSourceLoc_Handler_Instance;
AcousticSL_Config_t libSoundSourceLoc_Config_Instance;
volatile int16_t SOURCE_Angle_Value = 0;
volatile uint16_t SOURCE_Enable_Value = 1;
extern UART_HandleTypeDef UartHandle;
volatile int32_t result[2];
static uint16_t PCM_Buffer[AUDIO_IN_CHANNELS * AUDIO_IN_SAMPLING_FREQUENCY / 1000];
void CCA02M2_AUDIO_IN_HalfTransfer_CallBack(uint32_t Instance)
{
UNUSED(Instance);
AudioProcess();
}
void CCA02M2_AUDIO_IN_TransferComplete_CallBack(uint32_t Instance)
{
UNUSED(Instance);
AudioProcess();
}
void AudioProcess(void)
{
if (CCA02M2_AUDIO_IN_PDMToPCM(CCA02M2_AUDIO_INSTANCE, (uint16_t *)PDM_Buffer, PCM_Buffer) != BSP_ERROR_NONE)
{
Error_Handler();
}
if (AcousticSL_Data_Input((int16_t *)&PCM_Buffer[BOTTOM_LEFT_MIC], (int16_t *)&PCM_Buffer[TOP_RIGHT_MIC],
(int16_t *)&PCM_Buffer[BOTTOM_RIGHT_MIC], (int16_t *)&PCM_Buffer[TOP_LEFT_MIC], &libSoundSourceLoc_Handler_Instance) == 1U)
{
SW_Task2_Start(); /*Localization Processing Task*/
}
Send_Audio_to_USB((int16_t *)PCM_Buffer, AUDIO_IN_SAMPLING_FREQUENCY / 1000 * AUDIO_IN_CHANNELS);
}
void Audio_Libraries_Init(void)
{
__IO uint32_t error_value = 0;
/* Enable CRC peripheral to unlock the library */
__CRC_CLK_ENABLE();
/*Setup Source Localization static parameters*/
libSoundSourceLoc_Handler_Instance.channel_number = 4;
libSoundSourceLoc_Handler_Instance.M12_distance = DIAGONAL;
libSoundSourceLoc_Handler_Instance.M34_distance = DIAGONAL;
libSoundSourceLoc_Handler_Instance.sampling_frequency = AUDIO_IN_SAMPLING_FREQUENCY;
libSoundSourceLoc_Handler_Instance.algorithm = ACOUSTIC_SL_ALGORITHM_GCCP;
libSoundSourceLoc_Handler_Instance.ptr_M1_channels = 4;
libSoundSourceLoc_Handler_Instance.ptr_M2_channels = 4;
libSoundSourceLoc_Handler_Instance.ptr_M3_channels = 4;
libSoundSourceLoc_Handler_Instance.ptr_M4_channels = 4;
libSoundSourceLoc_Handler_Instance.samples_to_process = 512;
(void)AcousticSL_getMemorySize(&libSoundSourceLoc_Handler_Instance);
libSoundSourceLoc_Handler_Instance.pInternalMemory = (uint32_t *)malloc(libSoundSourceLoc_Handler_Instance.internal_memory_size);
error_value += AcousticSL_Init(&libSoundSourceLoc_Handler_Instance);
/*Setup Source Localization dynamic parameters*/
libSoundSourceLoc_Config_Instance.resolution = 10;
libSoundSourceLoc_Config_Instance.threshold = 24;
error_value += AcousticSL_setConfig(&libSoundSourceLoc_Handler_Instance, &libSoundSourceLoc_Config_Instance);
/*Error Management*/
if (error_value != 0U)
{
Error_Handler();
}
/*Malloc Failure*/
if (libSoundSourceLoc_Handler_Instance.pInternalMemory == NULL)
{
Error_Handler();
}
}
void SW_IRQ_Tasks_Init(void)
{
HAL_NVIC_SetPriority((IRQn_Type)EXTI1_IRQn, 0x0D, 0);
HAL_NVIC_EnableIRQ((IRQn_Type)EXTI1_IRQn);
HAL_NVIC_SetPriority((IRQn_Type)EXTI2_IRQn, 0x0E, 0);
HAL_NVIC_EnableIRQ((IRQn_Type)EXTI2_IRQn);
}
void SW_Task1_Callback(void)
{
}
void SW_Task2_Callback(void)
{
(void)AcousticSL_Process((int32_t *)&result, &libSoundSourceLoc_Handler_Instance);
if (result[0] == ACOUSTIC_SL_NO_AUDIO_DETECTED)
{
result[0] = -1;
}
if (result[0] != -1)
{
char output[4];
int32_t n = sprintf(output, "%li", (int32_t)result[0]);
(void)HAL_UART_Transmit(&UartHandle, (uint8_t *)" ", 4, 0xFFFF);
(void)HAL_UART_Transmit(&UartHandle, (uint8_t *)"\r", 1, 0xFFFF);
(void)HAL_UART_Transmit(&UartHandle, (uint8_t *)output, (uint16_t)n, 0xFFFF);
}
}
void SW_Task1_Start(void)
{
HAL_NVIC_SetPendingIRQ(EXTI1_IRQn);
}
void SW_Task2_Start(void)
{
HAL_NVIC_SetPendingIRQ(EXTI2_IRQn);
}
void Error_Handler(void)
{
while (1);
}
Related
Can you help me about the code below.
Is it writing 1 to the data memory or to the internal memory.
there are only 32 internal registers
The processor is 32 bit risc-v based
thanks in advance
#include "string.h"
#define DEBUG_IF_ADDR 0x00002010
void bubble_sort(int* arr, int len)
{
int sort_num;
do
{
sort_num = 0;
for(int i=0;i<len-1;i++)
{
if(*(arr+i) > *(arr+i+1))
{
int tmp = *(arr+i);
*(arr+i) = *(arr+i+1);
*(arr+i+1) = tmp;
sort_num++;
}
}
}
while(sort_num!=0);
}
int main()
{
int unsorted_arr[] = {195,14,176,103,54,32,128};
int sorted_arr[] = {14,32,54,103,128,176,195};
bubble_sort(unsorted_arr,7);
int *addr_ptr = DEBUG_IF_ADDR;
if(memcmp((char*) sorted_arr, (char*) unsorted_arr, 28) == 0)
{
//success
*addr_ptr = 1;
}
else
{
//failure
*addr_ptr = 0;
}
return 0;
}
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BUFFER_SIZE 128
const char *FILE_GAME_DATA_PATH = "./game.txt";
struct game_tag
{
char gname[20];
struct game_tag *next;
} * head;
//struct game_tag g;
typedef struct game_tag GAME;
//file functions
void read_file();
//util functions.
int menu();
void print_game(GAME *game);
void release(GAME *data);
//core
void display_game();
void quite();
//link
int count_elements(GAME *elements);
int count();
int main(void)
{
int selected;
read_file();
while (1)
{
selected = menu();
switch (selected)
{
case 1:
display_game();
break;
default:
printf("cannot find your option!");
break;
}
}
}
void display_game()
{
read_file();
GAME *game = head;
if(game == NULL)
{
printf("\nNo Game!\n");
return;
}
print_game(game);
}
void print_game(GAME *game)
{
int records_count = 0;
printf("\n========== GAME ==========\n");
while(game != NULL)
{
printf("\n");
printf("Game Name: %s\n ", game->gname);
game = game->next;
records_count++;
}
printf("\nRecords: %d has been loaded successfully!\n", records_count);
release(game);
}
int menu()
{
printf("\n(1) Display Game details\n");
int choosen;
printf("\nEnter your option: ");
scanf("%d", &choosen);
return choosen;
}
void add_game(char game_name[20])
{
GAME *temp, *iterator;
temp = (struct game_tag *)malloc(sizeof(struct game_tag));
GAME info;
memcpy(info.gname, game_name, 20);
//temp = head;
iterator = head;
if (head == NULL)
{
head = temp;
head->next = NULL;
}
else
{
while (iterator->next != NULL)
{
iterator = iterator->next;
}
temp->next = NULL;
iterator->next = temp;
}
}
void read_file()
{
if(head != NULL)
{
GAME *temp;
while(head != NULL)
{
temp = head;
head = head->next;
free(temp);
}
}
FILE *file;
file = fopen(FILE_GAME_DATA_PATH, "r");
if(file == NULL)
{
printf("Cannot read file: %s", FILE_GAME_DATA_PATH);
exit(EXIT_FAILURE);
}
char game_name[20];
int i;
while(!feof(file))
{
char no[BUFFER_SIZE];
fgets(game_name, sizeof(game_name), file);
i=0;
while(game_name[i] != '\0')
{
i++;
}
game_name[i] = '\0';
add_game(game_name);
}
fclose(file);
}
void quite()
{
printf("\nGoodbye!");
exit(EXIT_SUCCESS);
}
void release(GAME *data)
{
if (data == NULL)
{
return;
}
// free the nodes
// because it can be use in memory
// we need to clear it first
// before we re-initailize the new data
GAME *temp;
while (data != NULL)
{
temp = data;
data = data->next;
free(temp);
}
}
(1) At this point, I have created the main function
(2) I'm trying to print the value from txt file which is char value that less than 20byte
(3) My error is it read the file properly, but it returns the garbage value
!Error I'm concern that my read_file function doesn't read txt proper or there an error in my condition statement
i have this problem,
i have STM32 Nucleo L152RE and a Shield SIM 900,
now if i write this easy thread all work well,
'static THD_WORKING_AREA(waRead, 128);
static THD_FUNCTION(Thread,arg) {
(void)arg;
chRegSetThreadName("th_callback");
while (TRUE){
/* This will wait for a character to be received */
uint8_t c = sdGet(&SD1); //questo prende il carattere
sdPut(&SD2, c); // questo lo spara alla terminale
}
}
'
when i sand a AT commnad i see the ok answer.
Now i create this buffer
'static uint8_t bufferMsg[128];'
and i use this thread for store the answer
' static THD_WORKING_AREA(waRead5, 128);
static THD_FUNCTION(Thread5,arg) {
chRegSetThreadName("th_Riempio_Buffer");
msg_t charbuf;
int count=0;
uint8_t c;
event_listener_t Uart1Data;
eventmask_t flags;
chEvtRegisterMask((event_source_t *)chnGetEventSource(&SD1), &Uart1Data, EVENT_MASK(1));
while (TRUE) {
chEvtWaitOneTimeout(EVENT_MASK(1), MS2ST(10));
chSysLock();
flags =chEvtGetAndClearFlags(&Uart1Data);
chSysUnlock();
if (flags & CHN_INPUT_AVAILABLE)
{
do
{
charbuf = chnGetTimeout(&SD1,TIME_IMMEDIATE);
if (charbuf != Q_TIMEOUT)
{
while((charbuf != '\n') && (count < 128)) {
sdWrite(&SD2, (uint8_t *)B3,4); // va bene
bufferMsg[count]= charbuf;
count++;
}
}
}
while (charbuf != Q_TIMEOUT);
}
}
}
'
this threads don't work and don't store the answer, can you help me?
best regards
A.
fot me i use,
Define
#define buffer_size 128
char buffer[buffer_size + 1];
int nbytes = 0;
Function
void SIM_callback(){ /* GSM900 Serial */
char x = SIM.getc();
buffer[nbytes] = x;
nbytes++; if (nbytes > buffer_size) nbytes = buffer_size;
buffer[nbytes] = '\0';
}
Main
main (){
// Clear Buffer
buffer[nbytes] = '\0';
...
while(1);
...
}
When I try to compile this code it gives the error that "linux/export.h: No such file or directory" and same for the other libraries but export.h is present at /usr/include ??
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/swap.h> /* struct reclaim_state */
#include <linux/cache.h>
#include <linux/init.h>
#include </usr/include/export.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
#include <linux/kmemleak.h>
#include <trace/events/kmem.h>
#include <linux/atomic.h>
#include "slab.h"
#if PAGE_SIZE <= (32767 * 2)
typedef s16 slobidx_t;
#else
typedef s32 slobidx_t;
#endif
struct slob_block {
slobidx_t units;
};
typedef struct slob_block slob_t;
#define SLOB_BREAK1 256
#define SLOB_BREAK2 1024
static LIST_HEAD(free_slob_small);
static LIST_HEAD(free_slob_medium);
static LIST_HEAD(free_slob_large);
static inline int slob_page_free(struct page *sp)
{
return PageSlobFree(sp);
}
static void set_slob_page_free(struct page *sp, struct list_head *list)
{
list_add(&sp->list, list);
__SetPageSlobFree(sp);
}
static inline void clear_slob_page_free(struct page *sp)
{
list_del(&sp->list);
__ClearPageSlobFree(sp);
}
#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
struct slob_rcu {
struct rcu_head head;
int size;
};
static DEFINE_SPINLOCK(slob_lock);
static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t offset = next - base;
if (size > 1) {
s[0].units = size;
s[1].units = offset;
} else
s[0].units = -offset;
}
static slobidx_t slob_units(slob_t *s)
{
if (s->units > 0)
return s->units;
return 1;
}
static slob_t *slob_next(slob_t *s)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t next;
if (s[0].units < 0)
next = -s[0].units;
else
next = s[1].units;
return base+next;
}
static int slob_last(slob_t *s)
{
return !((unsigned long)slob_next(s) & ~PAGE_MASK);
}
static void *slob_new_pages(gfp_t gfp, int order, int node)
{
void *page;
#ifdef CONFIG_NUMA
if (node != NUMA_NO_NODE)
page = alloc_pages_exact_node(node, gfp, order);
else
#endif
page = alloc_pages(gfp, order);
if (!page)
return NULL;
return page_address(page);
}
static void slob_free_pages(void *b, int order)
{
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += 1 << order;
free_pages((unsigned long)b, order);
}
static void *slob_page_alloc(struct page *sp, size_t size, int align)
{
slob_t *prev, *cur, *aligned = NULL;
int delta = 0, units = SLOB_UNITS(size);
for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
slobidx_t avail = slob_units(cur);
if (align) {
aligned = (slob_t *)ALIGN((unsigned long)cur, align);
delta = aligned - cur;
}
if (avail >= units + delta) { /* room enough? */
slob_t *next;
if (delta) { /* need to fragment head to align? */
next = slob_next(cur);
set_slob(aligned, avail - delta, next);
set_slob(cur, delta, aligned);
prev = cur;
cur = aligned;
avail = slob_units(cur);
}
next = slob_next(cur);
if (avail == units) { /* exact fit? unlink. */
if (prev)
set_slob(prev, slob_units(prev), next);
else
sp->freelist = next;
} else { /* fragment */
if (prev)
set_slob(prev, slob_units(prev), cur + units);
else
sp->freelist = cur + units;
set_slob(cur + units, avail - units, next);
}
sp->units -= units;
if (!sp->units)
clear_slob_page_free(sp);
return cur;
}
if (slob_last(cur))
return NULL;
}
}
static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
{
struct page *sp;
struct list_head *prev;
struct list_head *slob_list;
slob_t *b = NULL;
unsigned long flags;
if (size < SLOB_BREAK1)
slob_list = &free_slob_small;
else if (size < SLOB_BREAK2)
slob_list = &free_slob_medium;
else
slob_list = &free_slob_large;
spin_lock_irqsave(&slob_lock, flags);
list_for_each_entry(sp, slob_list, list) {
#ifdef CONFIG_NUMA
if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
continue;
#endif
if (sp->units < SLOB_UNITS(size))
continue;
prev = sp->list.prev;
b = slob_page_alloc(sp, size, align);
if (!b)
continue;
if (prev != slob_list->prev &&
slob_list->next != prev->next)
list_move_tail(slob_list, prev->next);
break;
}
spin_unlock_irqrestore(&slob_lock, flags);
/* Not enough space: must allocate a new page */
if (!b) {
b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
if (!b)
return NULL;
sp = virt_to_page(b);
__SetPageSlab(sp);
spin_lock_irqsave(&slob_lock, flags);
sp->units = SLOB_UNITS(PAGE_SIZE);
sp->freelist = b;
INIT_LIST_HEAD(&sp->list);
set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
set_slob_page_free(sp, slob_list);
b = slob_page_alloc(sp, size, align);
BUG_ON(!b);
spin_unlock_irqrestore(&slob_lock, flags);
}
if (unlikely((gfp & __GFP_ZERO) && b))
memset(b, 0, size);
return b;
}
static void slob_free(void *block, int size)
{
struct page *sp;
slob_t *prev, *next, *b = (slob_t *)block;
slobidx_t units;
unsigned long flags;
struct list_head *slob_list;
if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
BUG_ON(!size);
sp = virt_to_page(block);
units = SLOB_UNITS(size);
spin_lock_irqsave(&slob_lock, flags);
if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
/* Go directly to page allocator. Do not pass slob allocator */
if (slob_page_free(sp))
clear_slob_page_free(sp);
spin_unlock_irqrestore(&slob_lock, flags);
__ClearPageSlab(sp);
page_mapcount_reset(sp);
slob_free_pages(b, 0);
return;
}
if (!slob_page_free(sp)) {
/* This slob page is about to become partially free. Easy! */
sp->units = units;
sp->freelist = b;
set_slob(b, units,
(void *)((unsigned long)(b +
SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
if (size < SLOB_BREAK1)
slob_list = &free_slob_small;
else if (size < SLOB_BREAK2)
slob_list = &free_slob_medium;
else
slob_list = &free_slob_large;
set_slob_page_free(sp, slob_list);
goto out;
}
sp->units += units;
if (b < (slob_t *)sp->freelist) {
if (b + units == sp->freelist) {
units += slob_units(sp->freelist);
sp->freelist = slob_next(sp->freelist);
}
set_slob(b, units, sp->freelist);
sp->freelist = b;
} else {
prev = sp->freelist;
next = slob_next(prev);
while (b > next) {
prev = next;
next = slob_next(prev);
}
if (!slob_last(prev) && b + units == next) {
units += slob_units(next);
set_slob(b, units, slob_next(next));
} else
set_slob(b, units, next);
if (prev + slob_units(prev) == b) {
units = slob_units(b) + slob_units(prev);
set_slob(prev, units, slob_next(b));
} else
set_slob(prev, slob_units(prev), b);
}
out:
spin_unlock_irqrestore(&slob_lock, flags);
}
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
{
unsigned int *m;
int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
void *ret;
gfp &= gfp_allowed_mask;
lockdep_trace_alloc(gfp);
if (size < PAGE_SIZE - align) {
if (!size)
return ZERO_SIZE_PTR;
m = slob_alloc(size + align, gfp, align, node);
if (!m)
return NULL;
*m = size;
ret = (void *)m + align;
trace_kmalloc_node(caller, ret,
size, size + align, gfp, node);
} else {
unsigned int order = get_order(size);
if (likely(order))
gfp |= __GFP_COMP;
ret = slob_new_pages(gfp, order, node);
trace_kmalloc_node(caller, ret,
size, PAGE_SIZE << order, gfp, node);
}
kmemleak_alloc(ret, size, 1, gfp);
return ret;
}
void *__kmalloc(size_t size, gfp_t gfp)
{
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc);
#ifdef CONFIG_TRACING
void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
{
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
}
#ifdef CONFIG_NUMA
void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
int node, unsigned long caller)
{
return __do_kmalloc_node(size, gfp, node, caller);
}
#endif
#endif
void kfree(const void *block)
{
struct page *sp;
trace_kfree(_RET_IP_, block);
if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
kmemleak_free(block);
sp = virt_to_page(block);
if (PageSlab(sp)) {
int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
unsigned int *m = (unsigned int *)(block - align);
slob_free(m, *m + align);
} else
__free_pages(sp, compound_order(sp));
}
EXPORT_SYMBOL(kfree);
size_t ksize(const void *block)
{
struct page *sp;
int align;
unsigned int *m;
BUG_ON(!block);
if (unlikely(block == ZERO_SIZE_PTR))
return 0;
sp = virt_to_page(block);
if (unlikely(!PageSlab(sp)))
return PAGE_SIZE << compound_order(sp);
align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
m = (unsigned int *)(block - align);
return SLOB_UNITS(*m) * SLOB_UNIT;
}
EXPORT_SYMBOL(ksize);
int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
{
if (flags & SLAB_DESTROY_BY_RCU) {
/* leave room for rcu footer at the end of object */
c->size += sizeof(struct slob_rcu);
}
c->flags = flags;
return 0;
}
void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
void *b;
flags &= gfp_allowed_mask;
lockdep_trace_alloc(flags);
if (c->size < PAGE_SIZE) {
b = slob_alloc(c->size, flags, c->align, node);
trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
SLOB_UNITS(c->size) * SLOB_UNIT,
flags, node);
} else {
b = slob_new_pages(flags, get_order(c->size), node);
trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
PAGE_SIZE << get_order(c->size),
flags, node);
}
if (b && c->ctor)
c->ctor(b);
kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
return b;
}
EXPORT_SYMBOL(slob_alloc_node);
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
}
EXPORT_SYMBOL(kmem_cache_alloc);
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
return __do_kmalloc_node(size, gfp, node, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node);
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
{
return slob_alloc_node(cachep, gfp, node);
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif
static void __kmem_cache_free(void *b, int size)
{
if (size < PAGE_SIZE)
slob_free(b, size);
else
slob_free_pages(b, get_order(size));
}
static void kmem_rcu_free(struct rcu_head *head)
{
struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
__kmem_cache_free(b, slob_rcu->size);
}
void kmem_cache_free(struct kmem_cache *c, void *b)
{
kmemleak_free_recursive(b, c->flags);
if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
struct slob_rcu *slob_rcu;
slob_rcu = b + (c->size - sizeof(struct slob_rcu));
slob_rcu->size = c->size;
call_rcu(&slob_rcu->head, kmem_rcu_free);
} else {
__kmem_cache_free(b, c->size);
}
trace_kmem_cache_free(_RET_IP_, b);
}
EXPORT_SYMBOL(kmem_cache_free);
int __kmem_cache_shutdown(struct kmem_cache *c)
{
return 0;
}
int kmem_cache_shrink(struct kmem_cache *d)
{
return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);
struct kmem_cache kmem_cache_boot = {
.name = "kmem_cache",
.size = sizeof(struct kmem_cache),
.flags = SLAB_PANIC,
.align = ARCH_KMALLOC_MINALIGN,
};
void __init kmem_cache_init(void)
{
kmem_cache = &kmem_cache_boot;
slab_state = UP;
}
void __init kmem_cache_init_late(void)
{
slab_state = FULL;
}
I am using third party API which I get streams from a callback function
int OnNewImage(BYTE *pData, int nLen)
When I run a simple C++ sample program from console
int continue = 1;
int OnNewImage(BYTE *pData, int nLen)
{
std::cout << "On new image is called" << std::endl;
return continue;
}
int main()
{
// This will block
int result = DownloadStream(/*params*/...,OnNewImage /*callbackfunction*/);
return 0;
}
I get no memory leaks.[ memory does not increase ]
But When I use this callback function in a directshow filter, it
produce memory leaks.[ memory increase regularly]
What may cause this? And how can I fix it? Any ideas?
UPDATE: My DirectShow Filter structure
What I do:
Basically
I get streams at "unsigned __stdcall DVRStreamThread(LPVOID
pvParam)" function which call back OnNewImage
Then i insert frames into my queue inside that callback[OnNewImage]
Finally At FillBuffer I consume frames from queue.
It is am h264 stream. I can able to set simple graph like this
MySourceFilter ---> H264 Decoder ---> Video Renderer
Here is my FilterSourceCode:
Well I have a simple queue which i insert incoming frames then consume:
SynchronisedQueue
template <typename T>
class SynchronisedQueue
{
public:
void Enqueue(const T& data)
{
boost::unique_lock<boost::mutex> lock(queueMutex);
dataQueue.push(data);
conditionVariable.notify_one();
}
T Dequeue()
{
boost::unique_lock<boost::mutex> lock(queueMutex);
while (dataQueue.size()==0)
{
conditionVariable.wait(lock);
}
T result=dataQueue.front(); dataQueue.pop();
return result;
}
int Size()
{
boost::unique_lock<boost::mutex> lock(queueMutex);
int size = dataQueue.size();
return size;
}
private:
std::queue<T> dataQueue;
boost::mutex queueMutex;
boost::condition_variable conditionVariable;
};
Then My Filter:
DvrSourceFilter [ header]
#define DVRSourceFilterName L"DVRDirectShowFilter"
#include <streams.h>
#include <process.h>
#include <MyDvrApi.h>
#include "SynchronisedQueue.h"
// {F89A85DA-F77C-4d44-893B-CCA43A49E7EF}
DEFINE_GUID(CLSID_DVRSourceFilter,
0xf89a85da, 0xf77c, 0x4d44, 0x89, 0x3b, 0xcc, 0xa4, 0x3a, 0x49, 0xe7, 0xef);
class DECLSPEC_UUID("34363248-0000-0010-8000-00AA00389B71") Subtype_H264;
class DVRSourceFilter;
using namespace std;
/*
* **********************
* DVRPin
* **********************
*/
class DVRPin : public CSourceStream
{
public:
DVRPin(HRESULT *phr, DVRSourceFilter *pFilter);
~DVRPin();
// Override the version that offers exactly one media type
HRESULT GetMediaType(CMediaType *pMediaType);
HRESULT DecideBufferSize(IMemAllocator *pAlloc, ALLOCATOR_PROPERTIES *pRequest);
HRESULT FillBuffer(IMediaSample *pSample);
static int OnNewImage(void *pUser, BYTE *pData, int nLen, int nCh, int tMts, int nType, void *returnHandle);
// Setters
void SetDvrIp(char* dvrIp);
void SetDvrPort( int dvrPort);
void SetDvrUserName( char * userName);
void SetDvrPassword(char* password);
void SetStartTime(int startTime);
void SetMilliSecond(int milliSecond);
void SetChannelNumber(int channelNumber);
void SetSize(int width, int height);
// Getters
char* GetDvrIp();
int GetDvrPort();
char* GetDvrUserName();
char* GetDvrPassword();
int GetStartTime();
int GetMilliSecond();
int GetChannelNumber();
int GetMode();
public:
char* dvrIp;
int dvrPort;
char* userName;
char* password;
int startTime;
int milliSecond;
int channelNumber;
BITMAPINFOHEADER m_bmpInfo;
BYTE* m_RGB24Buffer;
DWORD m_RGB24BufferSize;
bool streamCompleted;
int hDecHandle;
HANDLE m_hDVRStreamThreadHandle;
unsigned int m_dwThreadID;
SynchronisedQueue<std::vector<BYTE>> IncomingFramesQueue;
protected:
virtual HRESULT OnThreadCreate();
virtual HRESULT OnThreadDestroy();
virtual HRESULT DoBufferProcessingLoop();
};
/*
* **********************
* DVRSourceFilter
* *********************
*
*/
class DVRSourceFilter : public CSource
{
public:
DECLARE_IUNKNOWN;
static CUnknown * WINAPI CreateInstance(IUnknown *pUnk, HRESULT *phr);
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, void **ppv);
void SetDVRLiveParameters(char* dvrIP, int dvrPort, char* userName, char* password, int channelNumber, int width, int height);
private:
DVRSourceFilter(IUnknown *pUnk, HRESULT *phr);
~DVRSourceFilter();
private:
DVRPin *m_pPin;
};
DvrSourceFilter [implementation]
#include "DvrSourceFilter.h"
unsigned __stdcall DVRStreamThread(LPVOID pvParam)
{
DVRPin* streamReader = (DVRPin*)pvParam;
int channelBits = 1 << (streamReader->channelNumber - 1);
streamReader->m_RGB24BufferSize = streamReader->m_bmpInfo.biWidth * streamReader->m_bmpInfo.biHeight * 3;
streamReader->m_RGB24Buffer = (BYTE*)malloc(streamReader->m_RGB24BufferSize);
DownloadStream((LPCTSTR)streamReader->dvrIp,
streamReader->dvrPort , (LPCTSTR)streamReader->userName ,
(LPCTSTR)streamReader->password , channelBits, channelBits,
streamReader->startTime, streamReader->milliSecond,
streamReader->OnNewImage, (void*)streamReader);
streamReader->startTime = -2; // End Of Stream
return 0;
}
/*
* ******************
* DVRPin Class
* ******************
*/
DVRPin::DVRPin(HRESULT *phr, DVRSourceFilter *pFilter)
: CSourceStream(NAME("DVR Source Bitmap"), phr, pFilter, L"Out")
{
m_bmpInfo.biSize = sizeof(BITMAPINFOHEADER);
m_bmpInfo.biCompression = BI_RGB;
m_bmpInfo.biBitCount = 24;
m_bmpInfo.biPlanes = 1;
m_bmpInfo.biClrImportant = 0;
m_bmpInfo.biClrUsed = 0;
m_bmpInfo.biXPelsPerMeter = 0;
m_bmpInfo.biYPelsPerMeter = 0;
hDecHandle = 0;
m_RGB24Buffer = NULL;
m_RGB24BufferSize = 0;
streamCompleted = false;
startTime = -1; // Live Stream
*phr = S_OK;
}
DVRPin::~DVRPin()
{
}
int DVRPin::OnNewImage(void *pUser, BYTE *pData, int nLen, int nCh, int tMts, int nType, void *returnHandle)
{
DVRPin* reader = (DVRPin*)pUser;
if(reader->streamCompleted)
{
return false;
}
if(pData)
{
std::vector<BYTE> vecFrame(pData, pData + nLen/sizeof(pData[0]));
reader->IncomingFramesQueue.Enqueue(vecFrame);
}
return !reader->streamCompleted;
}
HRESULT DVRPin::OnThreadCreate()
{
m_hDVRStreamThreadHandle =
(HANDLE)_beginthreadex(NULL, 0, &DVRStreamThread, (void*)this, 0, &m_dwThreadID);
return S_OK;
}
HRESULT DVRPin::OnThreadDestroy() {
streamCompleted = true;
_endthreadex(0);
CloseHandle(m_hDVRStreamThreadHandle);
return S_OK;
}
HRESULT DVRPin::GetMediaType(CMediaType *pMediaType)
{
CAutoLock cAutoLock(m_pFilter->pStateLock());
CheckPointer(pMediaType, E_POINTER);
VIDEOINFOHEADER* pvi = (VIDEOINFOHEADER*)pMediaType->AllocFormatBuffer(sizeof(VIDEOINFOHEADER));
if (pvi == 0)
return(E_OUTOFMEMORY);
ZeroMemory(pvi, pMediaType->cbFormat);
pvi->bmiHeader = m_bmpInfo;
pvi->bmiHeader.biSizeImage = GetBitmapSize(&pvi->bmiHeader);
SetRectEmpty(&(pvi->rcSource));
SetRectEmpty(&(pvi->rcTarget));
pMediaType->SetType(&MEDIATYPE_Video);
pMediaType->SetFormatType(&FORMAT_VideoInfo);
pMediaType->SetTemporalCompression(FALSE);
// Work out the GUID for the subtype from the header info.
const GUID SubTypeGUID = __uuidof(Subtype_H264);//GetBitmapSubtype(&pvi->bmiHeader);
pMediaType->SetSubtype(&SubTypeGUID);
pMediaType->SetSampleSize(pvi->bmiHeader.biSizeImage);
return S_OK;
}
HRESULT DVRPin::DecideBufferSize(IMemAllocator *pAlloc, ALLOCATOR_PROPERTIES *pRequest)
{
HRESULT hr;
CAutoLock cAutoLock(m_pFilter->pStateLock());
CheckPointer(pAlloc, E_POINTER);
CheckPointer(pRequest, E_POINTER);
VIDEOINFOHEADER *pvi = (VIDEOINFOHEADER*) m_mt.Format();
if (pRequest->cBuffers == 0)
{
pRequest->cBuffers = 2;
}
pRequest->cbBuffer = pvi->bmiHeader.biSizeImage;
ALLOCATOR_PROPERTIES Actual;
hr = pAlloc->SetProperties(pRequest, &Actual);
if (FAILED(hr))
{
return hr;
}
if (Actual.cbBuffer < pRequest->cbBuffer)
{
return E_FAIL;
}
return S_OK;
}
HRESULT DVRPin::FillBuffer(IMediaSample *pSample)
{
if(!streamCompleted)
{
CAutoLock cAutoLock(m_pLock);
HRESULT hr;
BYTE* pData = NULL;
hr = pSample->GetPointer(&pData);
if(FAILED(hr))
{
pSample->Release();
return hr;
}
if(IncomingFramesQueue.Size() <= 0) {
return S_OK;
}
vector<BYTE> data = IncomingFramesQueue.Dequeue();
int dataSize = (int)data.size();
if(dataSize <= 0 || dataSize > 1000000)
{
return S_OK;
}
memcpy(pData, &data[0], dataSize);
hr = pSample->SetActualDataLength(dataSize);
if(FAILED(hr))
{
pSample->Release();
return hr;
}
hr = pSample->SetSyncPoint(TRUE);
if(FAILED(hr))
{
pSample->Release();
return hr;
}
pSample->Release();
}
return S_OK;
}
HRESULT DVRPin::DoBufferProcessingLoop() {
Command com;
REFERENCE_TIME rtNow = 0L;
REFERENCE_TIME rtAdvise = 0L;
OnThreadStartPlay();
do {
while (!streamCompleted && !CheckRequest(&com)) {
IncomingFramesQueue.WaitUntilHaveElements();
IMediaSample *pSample;
HRESULT hr = GetDeliveryBuffer(&pSample,NULL,NULL,FALSE);
if (FAILED(hr)) {
continue; // go round again. Perhaps the error will go away
// or the allocator is decommited & we will be asked to
// exit soon.
}
hr = FillBuffer(pSample);
if (hr == S_OK) {
Deliver(pSample);
} else if (hr == S_FALSE) {
pSample->Release();
DeliverEndOfStream();
return S_FALSE;
} else {
// Log Error
}
pSample->Release();
}
if (com == CMD_RUN || com == CMD_PAUSE)
com = GetRequest(); // throw command away
else if (com != CMD_STOP)
{
// Log Error
}
} while (!streamCompleted && com != CMD_STOP);
return S_OK;
}
void DVRPin::SetDvrIp( char* dvrIp )
{
this->dvrIp = dvrIp;
}
void DVRPin::SetDvrPort( int dvrPort )
{
this->dvrPort = dvrPort;
}
void DVRPin::SetDvrUserName( char * userName )
{
this->userName = userName;
}
void DVRPin::SetDvrPassword( char* password )
{
this->password = password;
}
void DVRPin::SetStartTime( int startTime )
{
this->startTime = startTime;
}
void DVRPin::SetMilliSecond( int milliSecond )
{
this->milliSecond = milliSecond;
}
void DVRPin::SetSize(int width, int height) {
m_bmpInfo.biWidth = width;
m_bmpInfo.biHeight = height;
m_bmpInfo.biSizeImage = GetBitmapSize(&m_bmpInfo);
}
char* DVRPin::GetDvrIp()
{
return dvrIp;
}
int DVRPin::GetDvrPort()
{
return dvrPort;
}
char* DVRPin::GetDvrUserName()
{
return userName;
}
char* DVRPin::GetDvrPassword()
{
return password;
}
int DVRPin::GetStartTime()
{
return startTime;
}
int DVRPin::GetMilliSecond()
{
return milliSecond;
}
void DVRPin::SetChannelNumber( int channelNumber )
{
this->channelNumber = channelNumber;
}
int DVRPin::GetChannelNumber()
{
return channelNumber;
}
/*
* ****************************
* DVRSourceFilter Class
* ***************************
*/
DVRSourceFilter::DVRSourceFilter(IUnknown *pUnk, HRESULT *phr)
: CSource(NAME("DVRSourceBitmap"), pUnk, CLSID_DVRSourceFilter)
{
// The pin magically adds itself to our pin array.
m_pPin = new DVRPin(phr, this);
// Just for test at graph studio
SetDVRLiveParameters("192.168.3.151", 7000, "admin", "000000", 3, 352, 288);
if (phr)
{
if (m_pPin == NULL)
*phr = E_OUTOFMEMORY;
else
*phr = S_OK;
}
}
DVRSourceFilter::~DVRSourceFilter()
{
delete m_pPin;
}
CUnknown * WINAPI DVRSourceFilter::CreateInstance(IUnknown *pUnk, HRESULT *phr)
{
DVRSourceFilter *pNewFilter = new DVRSourceFilter(pUnk, phr);
if (phr)
{
if (pNewFilter == NULL)
*phr = E_OUTOFMEMORY;
else
*phr = S_OK;
}
return pNewFilter;
}
STDMETHODIMP DVRSourceFilter::NonDelegatingQueryInterface( REFIID riid, void **ppv )
{
return CSource::NonDelegatingQueryInterface(riid, ppv);
}
void DVRSourceFilter::SetDVRLiveParameters( char* dvrIP, int dvrPort, char* userName, char* password, int channelNumber, int width, int height )
{
m_pPin->SetDvrIp(dvrIP);
m_pPin->SetDvrPort(dvrPort);
m_pPin->SetDvrUserName(userName);
m_pPin->SetDvrPassword(password);
m_pPin->SetChannelNumber(channelNumber);
m_pPin->SetStartTime(-1);// Live Stream
m_pPin->SetMilliSecond(0);
m_pPin->SetSize(width, height);
}
...
To make directshow Filter simple [ to understand memory leak source], just implement OnNewImage function and FillBufferFunction as "dummy", but still has memory leak:
int DVRPin::OnNewImage(void *pUser, BYTE *pData, int nLen, int nCh, int tMts, int nType, void *returnHandle)
{
return 1; // for not to end call back
}
HRESULT DVRPin::FillBuffer(IMediaSample *pSample)
{
pSample->Release();
return S_OK;
}
In DVRStreamThread, you have:
streamReader->m_RGB24Buffer = (BYTE*)malloc(streamReader->m_RGB24BufferSize);
But I don't see a matching call to free() anywhere. When your DVRPin object is deleted, you will have to explicitly free the data pointed to by its m_RGB24Buffer member.
First thing I see, is that your destructors are not virtual. This might be a cause of leaks when release is not taking place when inheritance is used. See related article about the necessity of virtual destructors.