In DialogFlow-ES, how can I measure the accuracy of my agent apart from calculating the confidence score? - dialogflow-es

I have created a chatbot using DialogFlow-ES, but I cannot find a way to generate a confusion matrix from which we can measure the accuracy, precision, recall of our chatbot.
Even if we cannot generate a confusion matrix, are there any other performance metric apart from the Confidence score for a query, that DialogFlow-ES provides?
I tried searching for other metrics in google and everywhere only confidence score was mentioned. Also, I read some articles that dialogflow chatbots are different from the conventional chatbots. That is why I might have been unable to find any python libraries for this task too

Related

Find optimized threshold value

I have a dataset which has a fraud_label and some other sets of feature variable. How can I find the best rule which would help me identify fraud_label correctly with the best precision and recall values. Example of features are number_of_site_visits, external_fraud_score etc. I need to be able to come up with a rule which says that if number_of_site_visits is less than X and external_fraud_score is greater than Y then we will get the best precision and recall. I have to do this in Python and any help you can provide or direction would be very helpful.
I have tried Random Forest model but that gives me feature importances and not exact threshold values.
The best way to find the best rule for identifying fraud_label correctly with the best precision and recall values is to use a supervised machine learning algorithm such as logistic regression or support vector machines. These algorithms can be used to train a model on your dataset and then use the trained model to predict the fraud_label. The model can then be evaluated using metrics such as precision and recall.
You can also use grid search or cross-validation to find the optimal parameters for your model, which will help you identify the best thresholds for each feature variable. This will allow you to create a rule that will give you the best precision and recall values.
In Python, you can use scikit-learn library for implementing these algorithms.

How to get confidence score in keras_ocr

I am using keras_ocr from here. How to get output confidence score in this. I go through the official documentation of keras_ocr from here and I found that for some popular datasets they set confidence score = 1. And also I searched internet and found that confidence score functionality will be implemented in future. Currently how to get confidence score.

How to know which features contribute significantly in prediction models?

I am novice in DS/ML stuff. I am trying to solve Titanic case study in Kaggle, however my approach is not systematic till now. I have used correlation to find relationship between variables and have used KNN and Random Forest Classification, however my models performance has not improved. I have selected features based on the result of correlation between variables.
Please guide me if there are certain sk-learn methods which can be used to identify features which can contribute significantly in forecasting.
Through Various Boosting Techniques You can Improve accuracy approx 99% I suggest you to use Gradient Boosting.

Loss functions in LightFM

I recently came across LightFM while learning to train a recommender system. And so far what I know is that it utilizes loss functions which are logistic, BPR, WARP and k-OS WARP. I did not go through the math behind all these functions. Now what I am confused about is that how will I know that which loss function to use where?
From lightfm model documentation page:
logistic: useful when both positive (1) and negative (-1) interactions are present.
BPR: Bayesian Personalised Ranking 1 pairwise loss. Maximises the prediction difference between a positive example and a randomly chosen negative example. Useful when only positive interactions are present and optimising ROC AUC is desired.
WARP: Weighted Approximate-Rank Pairwise [2] loss. Maximises the rank of positive examples by repeatedly sampling negative examples until rank violating one is found. Useful when only positive interactions are present and optimising the top of the recommendation list (precision#k) is desired.
k-OS WARP: k-th order statistic loss [3]. A modification of WARP that uses the k-the positive example for any given user as a basis for pairwise updates.
Everything boils down to how your dataset is structured and what kind of user interacions you're looking at. Obviously one approach would be to include the loss function in your parameter grid when going through hyperparameter tuning (at least that's what I did) and check model accuracy. I find investingating why a given loss function performed better/worse on a dataset as a good learning exercise.

What is an appropriate training set size for text classification (Sentiment analysis)

I just wanted to understand (from your experience), that if I have to create a sentiment analysis classification model (using NLTK), what would be a good training data size. For instance if my training data is going to contain tweets, and I intend to classify them as positive,negative and neutral, how many tweets each should I ideally have per category to get a reasonable model working?
I understand that there are many parameters like quality of data, but if one has to get started what might be a good number.
That's a really hard question to answer for people who are not familiar with the exact data, its labelling and the application you want to use it for. But as a ballpark estimate, I would say start with 1,000 examples of each and go from there.

Resources