Related
I have recently been trying to encode an empty string with CamemBERT (BERT model for French). I wasn't sure on how to do that. If I try to simply encode an empty string,
from transformers import CamembertModel, CamembertTokenizer
import torch
tokenizer = CamembertTokenizer.from_pretrained("camembert-base")
camembert = CamembertModel.from_pretrained("camembert-base")
tokenized_sentence = tokenizer.tokenize("")
encoded_sentence = tokenizer.encode(tokenized_sentence, return_tensors='pt')
embeddings = camembert(encoded_sentence)
embeddings.last_hidden_state.squeeze()[0] # embedding of the CLS token
I get the error
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-21-553400f369a8> in <module>
1 # Tokenize in sub-words with SentencePiece
2 tokenized_sentence = tokenizer.tokenize("")
----> 3 encoded_sentence = tokenizer.encode(tokenized_sentence, return_tensors='pt')
4 embeddings = camembert(encoded_sentence)
5 embeddings.last_hidden_state.squeeze()[0] # embeddings.last_hidden_state[0][0]
~/anaconda3/envs/r_nlp2/lib/python3.8/site-packages/transformers/tokenization_utils_base.py in encode(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, return_tensors, **kwargs)
2057 ``convert_tokens_to_ids`` method).
2058 """
-> 2059 encoded_inputs = self.encode_plus(
2060 text,
2061 text_pair=text_pair,
~/anaconda3/envs/r_nlp2/lib/python3.8/site-packages/transformers/tokenization_utils_base.py in encode_plus(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)
2376 )
2377
-> 2378 return self._encode_plus(
2379 text=text,
2380 text_pair=text_pair,
~/anaconda3/envs/r_nlp2/lib/python3.8/site-packages/transformers/tokenization_utils.py in _encode_plus(self, text, text_pair, add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)
459 )
460
--> 461 first_ids = get_input_ids(text)
462 second_ids = get_input_ids(text_pair) if text_pair is not None else None
463
~/anaconda3/envs/r_nlp2/lib/python3.8/site-packages/transformers/tokenization_utils.py in get_input_ids(text)
446 )
447 else:
--> 448 raise ValueError(
449 f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
450 )
ValueError: Input [] is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers.
Which I think is expected behavior. I have tried with spaCy's French transformer model but have also been unsuccessful. Here's the code I used for spaCy :
from transformers import BertTokenizer, BertModel
import spacy
#!python -m spacy download fr_dep_news_trf
trf_fr = spacy.load("fr_dep_news_trf")
example = trf_fr("")
example._.trf_data.tensors[1].flatten() # embedding of the CLS token
And the error is
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-27-c53de04d2e6f> in <module>
1 example = trf_fr("")
----> 2 example._.trf_data.tensors[1].flatten()
IndexError: list index out of range
simply because the model returns [].
I guess that at this point, my question is theoretical: what would be the best or a good way to encode an empty string using CamemBERT or spaCy? Would "forcing" the model to return a vector of 0 be a good thing? Would returning "impossible" values such as a (10,..., 10) be a good possibility? Should I force the tokenizer to create a sequence of [PAD] tokens? In this case, how would I implement that using spaCy and/or CamemBERT?
Thanks!
PS : I'm using
Python 3.8.10
spaCy 3.0.6
transformers 4.6.1
OS Platform and Distribution:ubuntu 20.04
TensorFlow version:2.1.0
Python version:3.7.6
I wanted to write a simple layer that would work on the output of tf.experiment.make_csv_dataset and i could use to impute the missing values in numeric dtypes with batch mean, maintain a moving mean to be used at test time, create embeddings for categorical columns and keep the dimensions dependent on the predefined list of unique values.
Below is the code i wrote:
import tensorflow as tf
import pandas as pd
import numpy as np
from tensorflow.keras import layers
from tensorflow import feature_column
class NUM_TO_DENSE(layers.Layer):
def __init__(self,num_cols):
super().__init__()
self.keys = num_cols
self.keys_all = self.keys+[str(i)+'__nullcol' for i in self.keys]
def build(self,input_shape):
def create_moving_mean_vars():
return tf.Variable(initial_value=0.,shape=(),dtype=tf.float32,trainable=False)
self.moving_means_total = {t:create_moving_mean_vars() for t in self.keys}
self.layer_global_counter = tf.Variable(initial_value=0.,shape=(),dtype=tf.float32,trainable=False)
def call(self,inputs, training = True):
null_cols = {k:tf.math.is_finite(inputs[k]) for k in self.keys}
current_means = {}
def compute_update_current_means(t):
current_mean = tf.math.divide_no_nan(tf.reduce_sum(tf.where(null_cols[t],inputs[t],0.),axis=0),\
tf.reduce_sum(tf.cast(tf.math.is_finite(inputs[t]),tf.float32),axis=0))
self.moving_means_total[t].assign_add(current_mean)
return current_mean
if training:
current_means = {t:compute_update_current_means(t) for t in self.keys}
outputs = {t:tf.where(null_cols[t],inputs[t],current_means[t]) for t in self.keys}
outputs.update({str(k)+'__nullcol':tf.cast(null_cols[k],tf.float32) for k in self.keys})
self.layer_global_counter.assign_add(1.)
else:
outputs = {t:tf.where(null_cols[t],inputs[t],(self.moving_means_total[t]/self.layer_global_counter))\
for t in self.keys}
outputs.update({str(k)+'__nullcol':tf.cast(null_cols[k],tf.float32) for k in self.keys})
return outputs
class PREPROCESS_MONSOON(layers.Layer):
def __init__(self,cat_cols_with_unique_values,num_cols):
'''cat_cols_with_unqiue_values: (dict) {'col_cat':[unique_values_list]}
num_cols: (list) [num_cols_name_list]'''
super().__init__()
self.cat_cols = cat_cols_with_unique_values
self.num_cols = num_cols
def build(self,input_shape):
self.ntd = NUM_TO_DENSE(self.num_cols)
self.num_colnames = self.ntd.keys_all
self.ctd = {k:layers.DenseFeatures\
(feature_column.embedding_column\
(feature_column.categorical_column_with_vocabulary_list\
(k,v),tf.cast(tf.math.ceil(tf.math.log(tf.cast(len(self.cat_cols[k]),tf.float32))),tf.int32).numpy()))\
for k,v in self.cat_cols.items()}
self.cat_colnames = [i for i in self.cat_cols]
self.dense_colnames = self.num_colnames+self.cat_colnames
def call(self,inputs,training=True):
dense_num_d = self.ntd(inputs,training=training)
dense_cat_d = {k:self.ctd[k](inputs) for k in self.cat_colnames}
dense_num = tf.stack([dense_num_d[k] for k in self.num_colnames],axis=1)
dense_cat = tf.concat([dense_cat_d[k] for k in self.cat_colnames],axis=1)
dense_all = tf.concat([dense_num,dense_cat],axis=1)
return dense_all
creating data to test this
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train_ = pd.DataFrame(x_train.reshape(60000,-1),columns = ['col_'+str(i) for i in range(28*28)])
x_test_ = pd.DataFrame(x_test.reshape(10000,-1),columns = ['col_'+str(i) for i in range(28*28)])
x_train_['col_cat1'] = [np.random.choice(['a','b','c','d','e','f','g','h','i']) for i in range(x_train_.shape[0])]
x_test_['col_cat1'] = [np.random.choice(['a','b','c','d','e','f','g','h','i','j']) for i in range(x_test_.shape[0])]
x_train_['col_cat2'] = [np.random.choice(['a','b','c','d','e','f','g','h','i']) for i in range(x_train_.shape[0])]
x_test_['col_cat2'] = [np.random.choice(['a','b','c','d','e','f','g','h','i','j']) for i in range(x_test_.shape[0])]
x_train_[np.random.choice([True,False],size = x_train_.shape,p=[0.05,0.95]).reshape(x_train_.shape)] = np.nan
x_test_[np.random.choice([True,False],size = x_test_.shape,p=[0.05,0.95]).reshape(x_test_.shape)] = np.nan
x_train_.to_csv('data/x_train.csv',index=False)
x_test_.to_csv('data/x_test.csv',index=False)
getting one batch of created in ram
cdtypes = pd.read_csv('data/x_train.csv',nrows=2).dtypes
xtb = tf.data.experimental.make_csv_dataset('data/x_train.csv',32,header=True,prefetch_buffer_size=1,
column_defaults=[np.nan if i == (float or int) else '__missing__' for i in cdtypes])
for i in xtb:
break
dd = pd.read_csv('data/x_train.csv',nrows=2).head()
num_cols = [i for i in dd.columns if i not in ['col_cat1','col_cat2']]
cat_cols = [i for i in dd.columns if i in ['col_cat1','col_cat2']]
col_cat1_unique = ['a','b','c','d','e','f','g','h','i']
col_cat2_unique = ['a','b','c','d','e','f','g','h','i']
col_cat_unique = [col_cat1_unique,col_cat2_unique]
catcoldict = {k:v for k,v in zip(cat_cols,col_cat_unique)}
testing it:
this works:
pm = PREPROCESS_MONSOON(catcoldict,num_cols)
pm(i)
this works with a bug report
pm = PREPROCESS_MONSOON(catcoldict,num_cols)
#tf.function
def p(i):
return pm(i)
p(i)
output: (along with the expected preprocessed batch)
WARNING:tensorflow:AutoGraph could not transform <bound method NUM_TO_DENSE.call of <__main__.NUM_TO_DENSE object at 0x7f6458a0ec50>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: unexpected indent (<unknown>, line 10)
WARNING: AutoGraph could not transform <bound method NUM_TO_DENSE.call of <__main__.NUM_TO_DENSE object at 0x7f6458a0ec50>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: unexpected indent (<unknown>, line 10)
WARNING:tensorflow:AutoGraph could not transform <bound method NUM_TO_DENSE.call of <__main__.NUM_TO_DENSE object at 0x7f6458a0ec50>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: unexpected indent (<unknown>, line 10)
WARNING: AutoGraph could not transform <bound method NUM_TO_DENSE.call of <__main__.NUM_TO_DENSE object at 0x7f6458a0ec50>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: unexpected indent (<unknown>, line 10)
this fails
pm = PREPROCESS_MONSOON(catcoldict,num_cols)
inputs = tf.keras.Input(shape=(None,786))
x = pm(inputs)
output:
WARNING:tensorflow:AutoGraph could not transform <bound method NUM_TO_DENSE.call of <__main__.NUM_TO_DENSE object at 0x7f6458aa3a90>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: unexpected indent (<unknown>, line 10)
WARNING: AutoGraph could not transform <bound method NUM_TO_DENSE.call of <__main__.NUM_TO_DENSE object at 0x7f6458aa3a90>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: unexpected indent (<unknown>, line 10)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-78-64c553138beb> in <module>
2
3 inputs = tf.keras.Input(shape=(None,786))
----> 4 x = pm(inputs)
5 # x = tf.keras.layers.Dense(500,tf.keras.layers.ReLU(100.,0.01,0.))
6 # output = tf.keras.layers.Dense(10,tf.keras.layers.Softmax())
~/anaconda3/envs/tensorflow/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
771 not base_layer_utils.is_in_eager_or_tf_function()):
772 with auto_control_deps.AutomaticControlDependencies() as acd:
--> 773 outputs = call_fn(cast_inputs, *args, **kwargs)
774 # Wrap Tensors in `outputs` in `tf.identity` to avoid
775 # circular dependencies.
~/anaconda3/envs/tensorflow/lib/python3.7/site-packages/tensorflow_core/python/autograph/impl/api.py in wrapper(*args, **kwargs)
235 except Exception as e: # pylint:disable=broad-except
236 if hasattr(e, 'ag_error_metadata'):
--> 237 raise e.ag_error_metadata.to_exception(e)
238 else:
239 raise
TypeError: in converted code:
<ipython-input-66-936477fe8a70>:62 call *
dense_num_d = self.ntd(inputs,training=training)
/home/nitin/anaconda3/envs/tensorflow/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py:773 __call__
outputs = call_fn(cast_inputs, *args, **kwargs)
<ipython-input-66-936477fe8a70>:20 call
null_cols = {k:tf.math.is_finite(inputs[k]) for k in self.keys}
<ipython-input-66-936477fe8a70>:20 <dictcomp>
null_cols = {k:tf.math.is_finite(inputs[k]) for k in self.keys}
/home/nitin/anaconda3/envs/tensorflow/lib/python3.7/site-packages/tensorflow_core/python/ops/array_ops.py:862 _slice_helper
_check_index(s)
/home/nitin/anaconda3/envs/tensorflow/lib/python3.7/site-packages/tensorflow_core/python/ops/array_ops.py:752 _check_index
raise TypeError(_SLICE_TYPE_ERROR + ", got {!r}".format(idx))
TypeError: Only integers, slices (`:`), ellipsis (`...`), tf.newaxis (`None`) and scalar tf.int32/tf.int64 tensors are valid indices, got 'col_0'
Could someone help me undetstand what is happening here and how to go about achieving the intended behavior
I don't think this problem is related to AutoGraph. As visible from the stack trace you are trying to slice your layer inputs using a string key in your call method in NUM_TO_DENSE:
null_cols = {k:tf.math.is_finite(inputs[k]) for k in self.keys}
However, slicing in TensorFlow can only be done with int32 or int64.
I am trying to create a for loop which uses a defined function (B_lambda) and takes in values of wavelength and temperature to produce values of intensity. i.e. I want the loop to take the function B_lambda and to run through every value within my listed wavelength range for each temperature in the temperature list. Then I want to plot the results. I am not very good with the syntax and have tried many ways but nothing is producing what I need and I am mostly getting errors. I have no idea how to use a for loop to plot and all online sources that I have checked out have not helped me with using a defined function in a for loop. I will put my latest code that seems to have the least errors down below with the error message:
import matplotlib.pylab as plt
import numpy as np
from astropy import units as u
import scipy.constants
%matplotlib inline
#Importing constants to use.
h = scipy.constants.h
c = scipy.constants.c
k = scipy.constants.k
wavelengths= np.arange(1000,30000)*1.e-10
temperature=[3000,4000,5000,6000]
for lam in wavelengths:
for T in temperature:
B_lambda = ((2*h*c**2)/(lam**5))*((1)/(np.exp((h*c)/(lam*k*T))-1))
plt.figure()
plt.plot(wavelengths,B_lambda)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-6-73b866241c49> in <module>
17 B_lambda = ((2*h*c**2)/(lam**5))*((1)/(np.exp((h*c)/(lam*k*T))-1))
18 plt.figure()
---> 19 plt.plot(wavelengths,B_lambda)
20
21
/usr/local/lib/python3.6/dist-packages/matplotlib/pyplot.py in plot(scalex, scaley, data, *args, **kwargs)
2787 return gca().plot(
2788 *args, scalex=scalex, scaley=scaley, **({"data": data} if data
-> 2789 is not None else {}), **kwargs)
2790
2791
/usr/local/lib/python3.6/dist-packages/matplotlib/axes/_axes.py in plot(self, scalex, scaley, data, *args, **kwargs)
1663 """
1664 kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D._alias_map)
-> 1665 lines = [*self._get_lines(*args, data=data, **kwargs)]
1666 for line in lines:
1667 self.add_line(line)
/usr/local/lib/python3.6/dist-packages/matplotlib/axes/_base.py in __call__(self, *args, **kwargs)
223 this += args[0],
224 args = args[1:]
--> 225 yield from self._plot_args(this, kwargs)
226
227 def get_next_color(self):
/usr/local/lib/python3.6/dist-packages/matplotlib/axes/_base.py in _plot_args(self, tup, kwargs)
389 x, y = index_of(tup[-1])
390
--> 391 x, y = self._xy_from_xy(x, y)
392
393 if self.command == 'plot':
/usr/local/lib/python3.6/dist-packages/matplotlib/axes/_base.py in _xy_from_xy(self, x, y)
268 if x.shape[0] != y.shape[0]:
269 raise ValueError("x and y must have same first dimension, but "
--> 270 "have shapes {} and {}".format(x.shape, y.shape))
271 if x.ndim > 2 or y.ndim > 2:
272 raise ValueError("x and y can be no greater than 2-D, but have "
ValueError: x and y must have same first dimension, but have shapes (29000,) and (1,)```
First thing to note (and this is minor) is that astropy is not required to run your code. So, you can simplify the import statements.
import matplotlib.pylab as plt
import numpy as np
import scipy.constants
%matplotlib inline
#Importing constants to use.
h = scipy.constants.h
c = scipy.constants.c
k = scipy.constants.k
wavelengths= np.arange(1000,30000,100)*1.e-10 # here, I chose steps of 100, because plotting 29000 datapoints takes a while
temperature=[3000,4000,5000,6000]
Secondly, to tidy up the loop a bit, you can write a helper function, that youn call from within you loop:
def f(lam, T):
return ((2*h*c**2)/(lam**5))*((1)/(np.exp((h*c)/(lam*k*T))-1))
now you can collect the output of your function, together with the input parameters, e.g. in a list of tuples:
outputs = []
for lam in wavelengths:
for T in temperature:
outputs.append((lam, T, f(lam, T)))
Since you vary both wavelength and temperature, a 3d plot makes sense:
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='3d')
ax.plot(*zip(*outputs))
An alternative would be to display the data as an image, using colour to indicate the function output.
I am also including an alternative method to generate the data in this one. Since the function f can take arrays as input, you can feed one temperature at a time, and with it, all the wavelengths simultaneously.
# initialise output as array with proper shape
outputs = np.zeros((len(wavelengths), len(temperature)))
for i, T in enumerate(temperature):
outputs[:,i] = f(wavelengths, T)
The output now is a large matrix, which you can visualise as an image:
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(outputs, aspect=10e8, interpolation='none',
extent=[
np.min(temperature),
np.max(temperature),
np.max(wavelengths),
np.min(wavelengths)]
)
I am trying to define func(x) in order to use the genetic algs library here:
https://github.com/bobirdmi/genetic-algorithms/tree/master/examples
However, when I try and use sga.init_random_population(population_size, params, interval) the code complains of me using tf.Tensors as python bools.
However, I am only referencing one bool in the entire code (Elitism) so I have no idea why this error is even showing. Asked around others who used sga.init_... and my inputs/setup is fine. Any suggestions would be greatly appreciated.
Full traceback:
Traceback (most recent call last):
File "C:\Users\Eric\eclipse-workspace\hw1\ga2.py", line 74, in <module>
sga.init_random_population(population_size, params, interval)
File "C:\Program Files\Python36\lib\site-packages\geneticalgs\real_ga.py", line 346, in init_random_population
self._sort_population()
File "C:\Program Files\Python36\lib\site-packages\geneticalgs\standard_ga.py", line 386, in _sort_population
self.population.sort(key=lambda x: x.fitness_val, reverse=True)
File "C:\Program Files\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 671, in __bool__
raise TypeError("Using a `tf.Tensor` as a Python `bool` is not allowed. "
TypeError: Using a `tf.Tensor` as a Python `bool` is not allowed. Use `if t is not None:` instead of `if t:` to test if a tensor is defined, and use TensorFlow ops such as tf.cond to execute subgraphs conditioned on the value of a tensor.
code
import hw1
#import matplotlib
from geneticalgs import BinaryGA, RealGA, DiffusionGA, MigrationGA
#import numpy as np
#import csv
#import time
#import pickle
#import math
#import matplotlib.pyplot as plt
from keras.optimizers import Adam
from hw1 import x_train, y_train, x_test, y_test
from keras.losses import mean_squared_error
#import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout
# GA standard settings
generation_num = 50
population_size = 16
elitism = True
selection = 'rank'
tournament_size = None # in case of tournament selection
mut_type = 1
mut_prob = 0.05
cross_type = 1
cross_prob = 0.95
optim = 'min' # minimize or maximize a fitness value? May be 'min' or 'max'.
interval = (-1, 1)
# Migration GA settings
period = 5
migrant_num = 3
cloning = True
def func(x):
#dimensions of weights and biases
#layer0weights = [10][23]
#layer0biases = [10]
#layer1weights = [10][20]
#layer1biases = [20]
#layer2weights = [1][20]
#layer2biases = [1]
#split up x for weights and biases
lay0 = x[0:230]
bias0 = x[230:240]
lay1 = x[240:440]
bias1 = x[440:460]
lay2 = x[460:480]
bias2 = x[480:481]
#fit to the shape of the actual model
lay0 = lay0.reshape(23,10)
bias0 = bias0.reshape(10,)
lay1 = lay1.reshape(10,20)
bias1 = bias1.reshape(20,)
lay2 = lay2.reshape(20,1)
bias2 = bias2.reshape(1,)
#set the newly shaped object to layers
hw1.model.layers[0].set_weights([lay0, bias0])
hw1.model.layers[1].set_weights([lay1, bias1])
hw1.model.layers[2].set_weights([lay2, bias2])
res = hw1.model.predict(x_train)
error = mean_squared_error(res,y_train)
return error
ga_model = Sequential()
ga_model.add(Dense(10, input_dim=23, activation='relu'))
ga_model.add(Dense(20, activation='relu'))
ga_model.add(Dense(1, activation='sigmoid'))
sga = RealGA(func, optim=optim, elitism=elitism, selection=selection,
mut_type=mut_type, mut_prob=mut_prob,
cross_type=cross_type, cross_prob=cross_prob)
params = 481
sga.init_random_population(population_size, params, interval)
optimal = sga.best_solution[0]
predict = func(optimal)
print(predict)
Tensorflow generates a computational graph of operations to be executed in an Tensorflow session.
geneticalgs.RealGA.init_random_population is an operation that uses the numpy.random.uniform to generate a numpy array. 1
The generated population being a Tensor object could mean maybe:
numpy.random.uniform invoked in geneticalgs.RealGA.init_random_population was decorated to return Tensors
numpy.random.uniform was added in the computation graph to be executed in a session.
I'll try executing the program eagerly by enabling eager execution. 2
tf.enable_execution()
You can also in a way execute the parts that you care about eagerly.
size = tf.placeholder(tf.int64)
dim = tf.placeholder(tf.int64)
interval = tf.placeholder(tf.int64, shape=(2,))
init_random_population = tf.py_func(
sga.init_random_population, [size, dim, interval], [])
with tf.Session() as session:
session.run(
init_random_population,
{size: population_size, dim: params, interval: interval})
I am trying to use Caffe.Classifier class and its predict() method on my Imagenet trained caffemodel.
Images were resized to 256x256 and crops of 227x227 were used to train the net.
Everything is simple and straight forward, yet I keep getting weird errors such as the following :
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-7-3b440ebf1f6e> in <module>()
17 image_dims=(256, 256))
18
---> 19 out = net.predict([image_caffe], oversample=True)
20 print(labels[out[0].argmax()].strip(),' (', out[0][out[0].argmax()] , ')')
21 plabel = int(labels[out[0].argmax()].strip())
<ipython-input-5-e6ae1810b820> in predict(self, inputs, oversample)
65 for ix, in_ in enumerate(inputs):
66 print('image dims = ',self.image_dims[0],',',self.image_dims[1] ,'_in = ',in_.shape)
---> 67 input_[ix] = caffe.io.resize_image(in_, self.image_dims)
68
69 if oversample:
C:\Users\Master\Anaconda3\envs\anaconda35\lib\site-packages\caffe\io.py in resize_image(im, new_dims, interp_order)
335 # ndimage interpolates anything but more slowly.
336 scale = tuple(np.array(new_dims, dtype=float) / np.array(im.shape[:2]))
--> 337 resized_im = zoom(im, scale + (1,), order=interp_order)
338 return resized_im.astype(np.float32)
339
C:\Users\Master\Anaconda3\envs\anaconda35\lib\site-packages\scipy\ndimage\interpolation.py in zoom(input, zoom, output, order, mode, cval, prefilter)
588 else:
589 filtered = input
--> 590 zoom = _ni_support._normalize_sequence(zoom, input.ndim)
591 output_shape = tuple(
592 [int(round(ii * jj)) for ii, jj in zip(input.shape, zoom)])
C:\Users\Master\Anaconda3\envs\anaconda35\lib\site-packages\scipy\ndimage\_ni_support.py in _normalize_sequence(input, rank, array_type)
63 if len(normalized) != rank:
64 err = "sequence argument must have length equal to input rank"
---> 65 raise RuntimeError(err)
66 else:
67 normalized = [input] * rank
RuntimeError: sequence argument must have length equal to input rank
And here is the snippets of code I'm using :
import sys
import caffe
import numpy as np
import lmdb
import matplotlib.pyplot as plt
import itertools
def flat_shape(x):
"Returns x without singleton dimension, eg: (1,28,28) -> (28,28)"
return x.reshape(x.shape)
def db_reader(fpath, type='lmdb'):
if type == 'lmdb':
return lmdb_reader(fpath)
else:
return leveldb_reader(fpath)
def lmdb_reader(fpath):
import lmdb
lmdb_env = lmdb.open(fpath)
lmdb_txn = lmdb_env.begin()
lmdb_cursor = lmdb_txn.cursor()
for key, value in lmdb_cursor:
datum = caffe.proto.caffe_pb2.Datum()
datum.ParseFromString(value)
label = int(datum.label)
image = caffe.io.datum_to_array(datum).astype(np.uint8)
yield (key, flat_shape(image), label)
def leveldb_reader(fpath):
import leveldb
db = leveldb.LevelDB(fpath)
for key, value in db.RangeIter():
datum = caffe.proto.caffe_pb2.Datum()
datum.ParseFromString(value)
label = int(datum.label)
image = caffe.io.datum_to_array(datum).astype(np.uint8)
yield (key, flat_shape(image), label)
Classifier class (copied form Caffe's python directory):
import numpy as np
import caffe
class Classifier(caffe.Net):
"""
Classifier extends Net for image class prediction
by scaling, center cropping, or oversampling.
Parameters
----------
image_dims : dimensions to scale input for cropping/sampling.
Default is to scale to net input size for whole-image crop.
mean, input_scale, raw_scale, channel_swap: params for
preprocessing options.
"""
def __init__(self, model_file, pretrained_file, image_dims=None,
mean=None, input_scale=None, raw_scale=None,
channel_swap=None):
caffe.Net.__init__(self, model_file, pretrained_file, caffe.TEST)
# configure pre-processing
in_ = self.inputs[0]
print('inputs[0]',self.inputs[0])
self.transformer = caffe.io.Transformer(
{in_: self.blobs[in_].data.shape})
self.transformer.set_transpose(in_, (2, 0, 1))
if mean is not None:
self.transformer.set_mean(in_, mean)
if input_scale is not None:
self.transformer.set_input_scale(in_, input_scale)
if raw_scale is not None:
self.transformer.set_raw_scale(in_, raw_scale)
if channel_swap is not None:
self.transformer.set_channel_swap(in_, channel_swap)
print('crops: ',self.blobs[in_].data.shape[2:])
self.crop_dims = np.array(self.blobs[in_].data.shape[2:])
if not image_dims:
image_dims = self.crop_dims
self.image_dims = image_dims
def predict(self, inputs, oversample=True):
"""
Predict classification probabilities of inputs.
Parameters
----------
inputs : iterable of (H x W x K) input ndarrays.
oversample : boolean
average predictions across center, corners, and mirrors
when True (default). Center-only prediction when False.
Returns
-------
predictions: (N x C) ndarray of class probabilities for N images and C
classes.
"""
# Scale to standardize input dimensions.
input_ = np.zeros((len(inputs),
self.image_dims[0],
self.image_dims[1],
inputs[0].shape[2]),
dtype=np.float32)
for ix, in_ in enumerate(inputs):
print('image dims = ',self.image_dims[0],',',self.image_dims[1] ,'_in = ',in_.shape)
input_[ix] = caffe.io.resize_image(in_, self.image_dims)
if oversample:
# Generate center, corner, and mirrored crops.
input_ = caffe.io.oversample(input_, self.crop_dims)
else:
# Take center crop.
center = np.array(self.image_dims) / 2.0
crop = np.tile(center, (1, 2))[0] + np.concatenate([
-self.crop_dims / 2.0,
self.crop_dims / 2.0
])
input_ = input_[:, crop[0]:crop[2], crop[1]:crop[3], :]
# Classify
caffe_in = np.zeros(np.array(input_.shape)[[0, 3, 1, 2]],
dtype=np.float32)
for ix, in_ in enumerate(input_):
caffe_in[ix] = self.transformer.preprocess(self.inputs[0], in_)
out = self.forward_all(**{self.inputs[0]: caffe_in})
predictions = out[self.outputs[0]]
# For oversampling, average predictions across crops.
if oversample:
predictions = predictions.reshape((len(predictions) / 10, 10, -1))
predictions = predictions.mean(1)
return predictions
Main section :
proto ='deploy.prototxt'
model='snap1.caffemodel'
mean='imagenet_mean.binaryproto'
db_path='G:/imagenet/ilsvrc12_val_lmdb'
# Extract mean from the mean image file
#mean_blobproto_new = caffe.proto.caffe_pb2.BlobProto()
#f = open(mean, 'rb')
#mean_blobproto_new.ParseFromString(f.read())
#mean_image = caffe.io.blobproto_to_array(mean_blobproto_new)
#f.close()
mu = np.load('mean.npy').mean(1).mean(1)
caffe.set_mode_gpu()
reader = lmdb_reader(db_path)
i = 0
for i, image, label in reader:
image_caffe = image.reshape(1, *image.shape)
print(image_caffe.shape, mu.shape)
net = Classifier(proto, model,
mean= mu,
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(256, 256))
out = net.predict([image_caffe], oversample=True)
print(i, labels[out[0].argmax()].strip(),' (', out[0][out[0].argmax()] , ')')
i+=1
What is wrong here?
I found the cause, I had to feed the image in the form of 3D tensor not a 4D one!
so our 4d tensor:
image_caffe = image.reshape(1, *image.shape)
needed to be changed to a 3D one:
image_caffe = image.transpose(2,1,0)
As a side note, try using python2 for running any caffe related. python3 might work at first but will definitely cause a lot of headaches. for instance, predict method with oversample set to True, will crash under python3 but works just fine under python2!