Related
I have a 2D array representing the efficiency of a process for a given set of parameters A and B. The parameter A along the columns changes periodically, starting from 0 to 225 with increment one. The problem is with the rows where the parameter was changed in the following order:
[16 ,18 ,20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,35 ,40 ,45 ,50 ,55 ,60 ,65 ,70 ,75 ,80 ,85 ,90 ,95 ,100 ,105 ,110 ,115 ,120 ,125]
So even though the rows increase with increment one, they represent a non-uniform increment of the parameter B. What I need is to showcase the values of the parameter B on the y-axis. Using axes.set_yticks() does not give me what I am looking for, and I do understand why but I do not know how to solve it.
A minimum example:
# Define parameter B values
parb_increment = [16, 18, 20] + list(range(21,34)) + list(range(35,126,5))
print(len(parb_increment))
print(x.shape)
# Figure and axes
figure, axes = plt.subplots(figsize=(10, 8))
# Plotting
im = axes.imshow(x, aspect='auto',
origin="lower",
cmap='Blues',
interpolation='none',
extent=(0, x.shape[1], 0, parb_increment[-1]))
# Unsuccessful trial for yticks
axes.set_yticks(parb_increment, labels=parb_increment)
# Colorbar
cb = figure.colorbar(im, ax=axes)
The previous code gives the figure and output below, and you can see how the ticks are not only misplaced but also start from an incorrect position.
35
(35, 225)
The item that controls the width/height of each pixel is aspect. Unfortunately you can't make it variable. The aspect won't change even if you modify/update y-axis ticks. That's why in your example ticks are mis-aligned with the rows of pixels.
Therefore, the solution to your problem is to duplicate those rows that increment non-uniformly.
See example below:
import numpy as np
import matplotlib.pyplot as plt
# Generate fake data
x = np.random.random((3, 4))
# Create uniform x-ticks and non-uniform y-ticks
x_increment = np.arange(0, x.shape[1]+1, 1)
y_increment = np.arange(0, x.shape[0]+1, 1) * np.arange(0, x.shape[0]+1, 1)
# Plot the data
fig, ax = plt.subplots(figsize=(6, 10))
img = ax.imshow(
x,
extent=(
0, x.shape[1], 0, y_increment[-1]
)
)
fig.colorbar(img, ax=ax)
ax.set_xlim(0, x.shape[1])
ax.set_xticks(x_increment)
ax.set_ylim(0, y_increment[-1])
ax.set_yticks(y_increment);
This replicates your problem and produces the following outcome.
The solution
First, determine the number of repeats of each row in the array:
nr_of_repeats_per_row =np.diff(y_increment)
nr_of_repeats_per_row = nr_of_repeats_per_row[::-1]
You need to reverse the order as the top row in the image is the first row in the array and y_increments provide the difference between rows starting from the last row in the array.
Now you can repeat each row in the array a specific number of times:
x_extended = np.repeat(x, nr_of_repeats_per_row, axis=0)
Replot with the x_extended:
fig, ax = plt.subplots(figsize=(6, 10))
img = ax.imshow(
x_extended,
extent=(
0, x.shape[1], 0, y_increment[-1]
),
interpolation="none"
)
fig.colorbar(img, ax=ax)
ax.set_xlim(0, x.shape[1])
ax.set_xticks(x_increment)
ax.set_ylim(0, y_increment[-1])
ax.set_yticks(y_increment);
And you should get this.
I am a little confused about how this code works:
fig, axes = plt.subplots(nrows=2, ncols=2)
plt.show()
How does the fig, axes work in this case? What does it do?
Also why wouldn't this work to do the same thing:
fig = plt.figure()
axes = fig.subplots(nrows=2, ncols=2)
There are several ways to do it. The subplots method creates the figure along with the subplots that are then stored in the ax array. For example:
import matplotlib.pyplot as plt
x = range(10)
y = range(10)
fig, ax = plt.subplots(nrows=2, ncols=2)
for row in ax:
for col in row:
col.plot(x, y)
plt.show()
However, something like this will also work, it's not so "clean" though since you are creating a figure with subplots and then add on top of them:
fig = plt.figure()
plt.subplot(2, 2, 1)
plt.plot(x, y)
plt.subplot(2, 2, 2)
plt.plot(x, y)
plt.subplot(2, 2, 3)
plt.plot(x, y)
plt.subplot(2, 2, 4)
plt.plot(x, y)
plt.show()
import matplotlib.pyplot as plt
fig, ax = plt.subplots(2, 2)
ax[0, 0].plot(range(10), 'r') #row=0, col=0
ax[1, 0].plot(range(10), 'b') #row=1, col=0
ax[0, 1].plot(range(10), 'g') #row=0, col=1
ax[1, 1].plot(range(10), 'k') #row=1, col=1
plt.show()
You can also unpack the axes in the subplots call
And set whether you want to share the x and y axes between the subplots
Like this:
import matplotlib.pyplot as plt
# fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
ax1, ax2, ax3, ax4 = axes.flatten()
ax1.plot(range(10), 'r')
ax2.plot(range(10), 'b')
ax3.plot(range(10), 'g')
ax4.plot(range(10), 'k')
plt.show()
You might be interested in the fact that as of matplotlib version 2.1 the second code from the question works fine as well.
From the change log:
Figure class now has subplots method
The Figure class now has a subplots() method which behaves the same as pyplot.subplots() but on an existing figure.
Example:
import matplotlib.pyplot as plt
fig = plt.figure()
axes = fig.subplots(nrows=2, ncols=2)
plt.show()
Read the documentation: matplotlib.pyplot.subplots
pyplot.subplots() returns a tuple fig, ax which is unpacked in two variables using the notation
fig, axes = plt.subplots(nrows=2, ncols=2)
The code:
fig = plt.figure()
axes = fig.subplots(nrows=2, ncols=2)
does not work because subplots() is a function in pyplot not a member of the object Figure.
Iterating through all subplots sequentially:
fig, axes = plt.subplots(nrows, ncols)
for ax in axes.flatten():
ax.plot(x,y)
Accessing a specific index:
for row in range(nrows):
for col in range(ncols):
axes[row,col].plot(x[row], y[col])
Subplots with pandas
This answer is for subplots with pandas, which uses matplotlib as the default plotting backend.
Here are four options to create subplots starting with a pandas.DataFrame
Implementation 1. and 2. are for the data in a wide format, creating subplots for each column.
Implementation 3. and 4. are for data in a long format, creating subplots for each unique value in a column.
Tested in python 3.8.11, pandas 1.3.2, matplotlib 3.4.3, seaborn 0.11.2
Imports and Data
import seaborn as sns # data only
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# wide dataframe
df = sns.load_dataset('planets').iloc[:, 2:5]
orbital_period mass distance
0 269.300 7.10 77.40
1 874.774 2.21 56.95
2 763.000 2.60 19.84
3 326.030 19.40 110.62
4 516.220 10.50 119.47
# long dataframe
dfm = sns.load_dataset('planets').iloc[:, 2:5].melt()
variable value
0 orbital_period 269.300
1 orbital_period 874.774
2 orbital_period 763.000
3 orbital_period 326.030
4 orbital_period 516.220
1. subplots=True and layout, for each column
Use the parameters subplots=True and layout=(rows, cols) in pandas.DataFrame.plot
This example uses kind='density', but there are different options for kind, and this applies to them all. Without specifying kind, a line plot is the default.
ax is array of AxesSubplot returned by pandas.DataFrame.plot
See How to get a Figure object, if needed.
How to save pandas subplots
axes = df.plot(kind='density', subplots=True, layout=(2, 2), sharex=False, figsize=(10, 6))
# extract the figure object; only used for tight_layout in this example
fig = axes[0][0].get_figure()
# set the individual titles
for ax, title in zip(axes.ravel(), df.columns):
ax.set_title(title)
fig.tight_layout()
plt.show()
2. plt.subplots, for each column
Create an array of Axes with matplotlib.pyplot.subplots and then pass axes[i, j] or axes[n] to the ax parameter.
This option uses pandas.DataFrame.plot, but can use other axes level plot calls as a substitute (e.g. sns.kdeplot, plt.plot, etc.)
It's easiest to collapse the subplot array of Axes into one dimension with .ravel or .flatten. See .ravel vs .flatten.
Any variables applying to each axes, that need to be iterate through, are combined with .zip (e.g. cols, axes, colors, palette, etc.). Each object must be the same length.
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 6)) # define the figure and subplots
axes = axes.ravel() # array to 1D
cols = df.columns # create a list of dataframe columns to use
colors = ['tab:blue', 'tab:orange', 'tab:green'] # list of colors for each subplot, otherwise all subplots will be one color
for col, color, ax in zip(cols, colors, axes):
df[col].plot(kind='density', ax=ax, color=color, label=col, title=col)
ax.legend()
fig.delaxes(axes[3]) # delete the empty subplot
fig.tight_layout()
plt.show()
Result for 1. and 2.
3. plt.subplots, for each group in .groupby
This is similar to 2., except it zips color and axes to a .groupby object.
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 6)) # define the figure and subplots
axes = axes.ravel() # array to 1D
dfg = dfm.groupby('variable') # get data for each unique value in the first column
colors = ['tab:blue', 'tab:orange', 'tab:green'] # list of colors for each subplot, otherwise all subplots will be one color
for (group, data), color, ax in zip(dfg, colors, axes):
data.plot(kind='density', ax=ax, color=color, title=group, legend=False)
fig.delaxes(axes[3]) # delete the empty subplot
fig.tight_layout()
plt.show()
4. seaborn figure-level plot
Use a seaborn figure-level plot, and use the col or row parameter. seaborn is a high-level API for matplotlib. See seaborn: API reference
p = sns.displot(data=dfm, kind='kde', col='variable', col_wrap=2, x='value', hue='variable',
facet_kws={'sharey': False, 'sharex': False}, height=3.5, aspect=1.75)
sns.move_legend(p, "upper left", bbox_to_anchor=(.55, .45))
Convert the axes array to 1D
Generating subplots with plt.subplots(nrows, ncols), where both nrows and ncols is greater than 1, returns a nested array of <AxesSubplot:> objects.
It’s not necessary to flatten axes in cases where either nrows=1 or ncols=1, because axes will already be 1 dimensional, which is a result of the default parameter squeeze=True
The easiest way to access the objects, is to convert the array to 1 dimension with .ravel(), .flatten(), or .flat.
.ravel vs. .flatten
flatten always returns a copy.
ravel returns a view of the original array whenever possible.
Once the array of axes is converted to 1-d, there are a number of ways to plot.
This answer is relevant to seaborn axes-level plots, which have the ax= parameter (e.g. sns.barplot(…, ax=ax[0]).
seaborn is a high-level API for matplotlib. See Figure-level vs. axes-level functions and seaborn is not plotting within defined subplots
import matplotlib.pyplot as plt
import numpy as np # sample data only
# example of data
rads = np.arange(0, 2*np.pi, 0.01)
y_data = np.array([np.sin(t*rads) for t in range(1, 5)])
x_data = [rads, rads, rads, rads]
# Generate figure and its subplots
fig, axes = plt.subplots(nrows=2, ncols=2)
# axes before
array([[<AxesSubplot:>, <AxesSubplot:>],
[<AxesSubplot:>, <AxesSubplot:>]], dtype=object)
# convert the array to 1 dimension
axes = axes.ravel()
# axes after
array([<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>],
dtype=object)
Iterate through the flattened array
If there are more subplots than data, this will result in IndexError: list index out of range
Try option 3. instead, or select a subset of the axes (e.g. axes[:-2])
for i, ax in enumerate(axes):
ax.plot(x_data[i], y_data[i])
Access each axes by index
axes[0].plot(x_data[0], y_data[0])
axes[1].plot(x_data[1], y_data[1])
axes[2].plot(x_data[2], y_data[2])
axes[3].plot(x_data[3], y_data[3])
Index the data and axes
for i in range(len(x_data)):
axes[i].plot(x_data[i], y_data[i])
zip the axes and data together and then iterate through the list of tuples.
for ax, x, y in zip(axes, x_data, y_data):
ax.plot(x, y)
Ouput
An option is to assign each axes to a variable, fig, (ax1, ax2, ax3) = plt.subplots(1, 3). However, as written, this only works in cases with either nrows=1 or ncols=1. This is based on the shape of the array returned by plt.subplots, and quickly becomes cumbersome.
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) for a 2 x 2 array.
This option is most useful for two subplots (e.g.: fig, (ax1, ax2) = plt.subplots(1, 2) or fig, (ax1, ax2) = plt.subplots(2, 1)). For more subplots, it's more efficient to flatten and iterate through the array of axes.
You could use the following:
import numpy as np
import matplotlib.pyplot as plt
fig, _ = plt.subplots(nrows=2, ncols=2)
for i, ax in enumerate(fig.axes):
ax.plot(np.sin(np.linspace(0,2*np.pi,100) + np.pi/2*i))
Or alternatively, using the second variable that plt.subplot returns:
fig, ax_mat = plt.subplots(nrows=2, ncols=2)
for i, ax in enumerate(ax_mat.flatten()):
...
ax_mat is a matrix of the axes. It's shape is nrows x ncols.
here is a simple solution
fig, ax = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=False)
for sp in fig.axes:
sp.plot(range(10))
Go with the following if you really want to use a loop:
def plot(data):
fig = plt.figure(figsize=(100, 100))
for idx, k in enumerate(data.keys(), 1):
x, y = data[k].keys(), data[k].values
plt.subplot(63, 10, idx)
plt.bar(x, y)
plt.show()
Another concise solution is:
// set up structure of plots
f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(20,10))
// for plot 1
ax1.set_title('Title A')
ax1.plot(x, y)
// for plot 2
ax2.set_title('Title B')
ax2.plot(x, y)
// for plot 3
ax3.set_title('Title C')
ax3.plot(x,y)
Background:
I have a list_of_x_and_y_list that contains x and y values which looks like:
[[(44800, 14888), (132000, 12500), (40554, 12900)], [(None, 193788), (101653, 78880), (3866, 160000)]]
I have another data_name_list ["data_a","data_b"] so that
"data_a" = [(44800, 14888), (132000, 12500), (40554, 12900)]
"data_b" = [(None, 193788), (101653, 78880), (3866, 160000)]
The len of list_of_x_and_y_list / or len of data_name_list is > 20.
Question:
How can I create a scatter plot for each item (being the same colour) in the data_name_list?
What I have tried:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax = plt.axes(facecolor='#FFFFFF')
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color']
print(list_of_x_and_y_list)
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
for x_and_y in x_and_y_list,:
print(x_and_y)
x, y = x_and_y
ax.scatter(x, y, label=data_name, color=color) # "label=data_name" creates
# a huge list as a legend!
# :(
plt.title('Matplot scatter plot')
plt.legend(loc=2)
file_name = "3kstc.png"
fig.savefig(file_name, dpi=fig.dpi)
print("Generated: {}".format(file_name))
The Problem:
The legend appears to be a very long list, which I don't know how to rectify:
Relevant Research:
Matplotlib scatterplot
Scatter Plot
Scatter plot in Python using matplotlib
The reason you get a long repeated list as a legend is because you are providing each point as a separate series, as matplotlib does not automatically group your data based on the labels.
A quick fix is to iterate over the list and zip together the x-values and the y-values of each series as two tuples, so that the x tuple contains all the x-values and the y tuple the y-values.
Then you can feed these tuples to the plt.plot method together with the labels.
I felt that the names list_of_x_and_y_list were uneccessary long and complicated, so in my code I've used shorter names.
import matplotlib.pyplot as plt
data_series = [[(44800, 14888), (132000, 12500), (40554, 12900)],
[(None, 193788), (101653, 78880), (3866, 160000)]]
data_names = ["data_a","data_b"]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax = plt.axes(facecolor='#FFFFFF')
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color']
for data, data_name, color in zip(data_series, data_names, colors):
x,y = zip(*data)
ax.scatter(x, y, label=data_name, color=color)
plt.title('Matplot scatter plot')
plt.legend(loc=1)
To only get one entry per data_name, you should add data_name only once as a label. The rest of the calls should go with label=None.
The simplest you can achieve this using the current code, is to set data_name to None at the end of the loop:
from matplotlib import pyplot as plt
from random import randint
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_facecolor('#FFFFFF')
# create some random data, suppose the sublists have different lengths
list_of_x_and_y_list = [[(randint(1000, 4000), randint(2000, 5000)) for col in range(randint(2, 10))]
for row in range(10)]
data_name_list = list('abcdefghij')
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
for x_and_y in x_and_y_list :
x, y = x_and_y
ax.scatter(x, y, label=data_name, color=color)
data_name = None
plt.legend(loc=2)
plt.show()
Some things can be simplified, making the code 'more pythonic', for example:
for x_and_y in x_and_y_list :
x, y = x_and_y
can be written as:
for x, y in x_and_y_list:
Another issue, is that with a lot of data calling scatter for every point could be rather slow. All the x and y belonging to the same list can be plotted together. For example using list comprehension:
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
xs = [x for x, y in x_and_y_list]
ys = [y for x, y in x_and_y_list]
ax.scatter(xs, ys, label=data_name, color=color)
scatter could even get a list of colors per point, but plotting all the points in one go, wouldn't allow for labels per data_name.
Very often, numpy is used to store numerical data. This has some advantages, such as vectorization for quick calculations. With numpy the code would look like:
import numpy as np
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
xys = np.array(x_and_y_list)
ax.scatter(xys[:,0], xys[:,1], label=data_name, color=color)
I can create a simple columnar diagram in a matplotlib according to the 'simple' dictionary:
import matplotlib.pyplot as plt
D = {u'Label1':26, u'Label2': 17, u'Label3':30}
plt.bar(range(len(D)), D.values(), align='center')
plt.xticks(range(len(D)), D.keys())
plt.show()
But, how do I create curved line on the text and numeric data of this dictionarie, I do not know?
Т_OLD = {'10': 'need1', '11': 'need2', '12': 'need1', '13': 'need2', '14': 'need1'}
Like the picture below
You may use numpy to convert the dictionary to an array with two columns, which can be plotted.
import matplotlib.pyplot as plt
import numpy as np
T_OLD = {'10' : 'need1', '11':'need2', '12':'need1', '13':'need2','14':'need1'}
x = list(zip(*T_OLD.items()))
# sort array, since dictionary is unsorted
x = np.array(x)[:,np.argsort(x[0])].T
# let second column be "True" if "need2", else be "False
x[:,1] = (x[:,1] == "need2").astype(int)
# plot the two columns of the array
plt.plot(x[:,0], x[:,1])
#set the labels accordinly
plt.gca().set_yticks([0,1])
plt.gca().set_yticklabels(['need1', 'need2'])
plt.show()
The following would be a version, which is independent on the actual content of the dictionary; only assumption is that the keys can be converted to floats.
import matplotlib.pyplot as plt
import numpy as np
T_OLD = {'10': 'run', '11': 'tea', '12': 'mathematics', '13': 'run', '14' :'chemistry'}
x = np.array(list(zip(*T_OLD.items())))
u, ind = np.unique(x[1,:], return_inverse=True)
x[1,:] = ind
x = x.astype(float)[:,np.argsort(x[0])].T
# plot the two columns of the array
plt.plot(x[:,0], x[:,1])
#set the labels accordinly
plt.gca().set_yticks(range(len(u)))
plt.gca().set_yticklabels(u)
plt.show()
Use numeric values for your y-axis ticks, and then map them to desired strings with plt.yticks():
import matplotlib.pyplot as plt
import pandas as pd
# example data
times = pd.date_range(start='2017-10-17 00:00', end='2017-10-17 5:00', freq='H')
data = np.random.choice([0,1], size=len(times))
data_labels = ['need1','need2']
fig, ax = plt.subplots()
ax.plot(times, data, marker='o', linestyle="None")
plt.yticks(data, data_labels)
plt.xlabel("time")
Note: It's generally not a good idea to use a line graph to represent categorical changes in time (e.g. from need1 to need2). Doing that gives the visual impression of a continuum between time points, which may not be accurate. Here, I changed the plotting style to points instead of lines. If for some reason you need the lines, just remove linestyle="None" from the call to plt.plot().
UPDATE
(per comments)
To make this work with a y-axis category set of arbitrary length, use ax.set_yticks() and ax.set_yticklabels() to map to y-axis values.
For example, given a set of potential y-axis values labels, let N be the size of a subset of labels (here we'll set it to 4, but it could be any size).
Then draw a random sample data of y values and plot against time, labeling the y-axis ticks based on the full set labels. Note that we still use set_yticks() first with numerical markers, and then replace with our category labels with set_yticklabels().
labels = np.array(['A','B','C','D','E','F','G'])
N = 4
# example data
times = pd.date_range(start='2017-10-17 00:00', end='2017-10-17 5:00', freq='H')
data = np.random.choice(np.arange(len(labels)), size=len(times))
fig, ax = plt.subplots(figsize=(15,10))
ax.plot(times, data, marker='o', linestyle="None")
ax.set_yticks(np.arange(len(labels)))
ax.set_yticklabels(labels)
plt.xlabel("time")
This gives the exact desired plot:
import matplotlib.pyplot as plt
from collections import OrderedDict
T_OLD = {'10' : 'need1', '11':'need2', '12':'need1', '13':'need2','14':'need1'}
T_SRT = OrderedDict(sorted(T_OLD.items(), key=lambda t: t[0]))
plt.plot(map(int, T_SRT.keys()), map(lambda x: int(x[-1]), T_SRT.values()),'r')
plt.ylim([0.9,2.1])
ax = plt.gca()
ax.set_yticks([1,2])
ax.set_yticklabels(['need1', 'need2'])
plt.title('T_OLD')
plt.xlabel('time')
plt.ylabel('need')
plt.show()
For Python 3.X the plotting lines needs to explicitly convert the map() output to lists:
plt.plot(list(map(int, T_SRT.keys())), list(map(lambda x: int(x[-1]), T_SRT.values())),'r')
as in Python 3.X map() returns an iterator as opposed to a list in Python 2.7.
The plot uses the dictionary keys converted to ints and last elements of need1 or need2, also converted to ints. This relies on the particular structure of your data, if the values where need1 and need3 it would need a couple more operations.
After plotting and changing the axes limits, the program simply modifies the tick labels at y positions 1 and 2. It then also adds the title and the x and y axis labels.
Important part is that the dictionary/input data has to be sorted. One way to do it is to use OrderedDict. Here T_SRT is an OrderedDict object sorted by keys in T_OLD.
The output is:
This is a more general case for more values/labels in T_OLD. It assumes that the label is always 'needX' where X is any number. This can readily be done for a general case of any string preceding the number though it would require more processing,
import matplotlib.pyplot as plt
from collections import OrderedDict
import re
T_OLD = {'10' : 'need1', '11':'need8', '12':'need11', '13':'need1','14':'need3'}
T_SRT = OrderedDict(sorted(T_OLD.items(), key=lambda t: t[0]))
x_val = list(map(int, T_SRT.keys()))
y_val = list(map(lambda x: int(re.findall(r'\d+', x)[-1]), T_SRT.values()))
plt.plot(x_val, y_val,'r')
plt.ylim([0.9*min(y_val),1.1*max(y_val)])
ax = plt.gca()
y_axis = list(set(y_val))
ax.set_yticks(y_axis)
ax.set_yticklabels(['need' + str(i) for i in y_axis])
plt.title('T_OLD')
plt.xlabel('time')
plt.ylabel('need')
plt.show()
This solution finds the number at the end of the label using re.findall to accommodate for the possibility of multi-digit numbers. Previous solution just took the last component of the string because numbers were single digit. It still assumes that the number for plotting position is the last number in the string, hence the [-1]. Again for Python 3.X map output is explicitly converted to list, step not necessary in Python 2.7.
The labels are now generated by first selecting unique y-values using set and then renaming their labels through concatenation of the strings 'need' with its corresponding integer.
The limits of y-axis are set as 0.9 of the minimum value and 1.1 of the maximum value. Rest of the formatting is as before.
The result for this test case is:
I have a code that runs a rolling window (30) average over a range (i.e. 300)
So I have 10 averages but they plot against ticks 1-10 rather than spaced over every window of 30.
The only way I can get it to look right is to plot it over (len(windowlength)) but the x-axis isnt right.
Is there any way to manually space the results?
windows30 = (sliding_window(sequence, 30))
Overall_Mean = mean(sequence)
fig, (ax) = plt.subplots()
plt.subplots_adjust(left=0.07, bottom=0.08, right=0.96, top=0.92, wspace=0.20, hspace=0.23)
ax.set_ylabel('mean (%)')
ax.set_xlabel(' Length') # axis titles
ax.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5)
ax.plot(windows30, color='r', marker='o', markersize=3)
ax.plot([0, len(sequence)], [Overall_Mean, Overall_Mean], lw=0.75)
plt.show()
From what I have understood you have a list of length 300 but only holds 10 values inside. If that is the case, you can remove the other values that are None from your windows30 list using the following solution.
Code Demonstration:
import numpy as np
import random
import matplotlib.pyplot as plt
# Generating the list of Nones and numbers
listofzeroes = [None] * 290
numbers = random.sample(range(50), 10)
numbers.extend(listofzeroes)
# Removing Nones from the list
numbers = [value for value in numbers if value is not None]
step = len(numbers)
x_values = np.linspace(0,300,step) # Generate x-values
plt.plot(x_values,numbers, color='red', marker='o')
This is a working example, the relevant code for you is after the second comment.
Output:
The above code will work independently of where the Nones are located in your list. I hope this solves your problem.