I'm trying to solve an equation system with 16 equations and 16 unknowns using sympy but it doesn't seem to solve it well.
I want to solve the system [K][d]=[f] where [K] is the coefficients matrix, [d] the unknowns and [f] are constants. I know some unknowns "d" and some constants "f", so I have same number for both equations and unknowns, but when I substitute these values into the equations and try to solve it the results for all "dx" include "dx8". I checked the matrix determinant and is positive so I should get a unique answer.
Here is the code:
import sympy as sp
import numpy as np
K = np.array([[560000000.0, 0.0, -480000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0,-80000000.0, 120000000.0, 0.0, -200000000.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 393333333.3, 120000000.0, -180000000.0, 0.0, 0.0, 0.0, 0.0,80000000.0, -213333333.3, -200000000.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[-480000000.0, 120000000.0, 1120000000.0, -200000000.0,-480000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0, -160000000.0,200000000.0, 0.0, -200000000.0, 0.0, 0.0],
[80000000.0, -180000000.0, -200000000.0, 786666666.7, 120000000.0,-180000000.0, 0.0, 0.0, 0.0, 0.0, 200000000.0, -426666666.7,-200000000.0, 0.0, 0.0, 0.0],
[0.0, 0.0, -480000000.0, 120000000.0, 1120000000.0, -200000000.0,-480000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0, -160000000.0,200000000.0, 0.0, -200000000.0],
[0.0, 0.0, 80000000.0, -180000000.0, -200000000.0, 786666666.7,120000000.0, -180000000.0, 0.0, 0.0, 0.0, 0.0, 200000000.0,-426666666.7, -200000000.0, 0.0],
[0.0, 0.0, 0.0, 0.0, -480000000.0, 120000000.0, 560000000.0,-200000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -80000000.0, 80000000.0],
[0.0, 0.0, 0.0, 0.0, 80000000.0, -180000000.0, -200000000.0,393333333.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 120000000.0,-213333333.3],
[-80000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 560000000.0,-200000000.0, -480000000.0, 120000000.0, 0.0, 0.0, 0.0, 0.0],
[120000000.0, -213333333.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-200000000.0, 393333333.3, 80000000.0, -180000000.0, 0.0, 0.0, 0.0,0.0],
[0.0, -200000000.0, -160000000.0, 200000000.0, 0.0, 0.0, 0.0, 0.0,-480000000.0, 80000000.0, 1120000000.0, -200000000.0, -480000000.0,120000000.0, 0.0, 0.0],
[-200000000.0, 0.0, 200000000.0, -426666666.7, 0.0, 0.0, 0.0, 0.0,120000000.0, -180000000.0, -200000000.0, 786666666.7, 80000000.0,-180000000.0, 0.0, 0.0],
[0.0, 0.0, 0.0, -200000000.0, -160000000.0, 200000000.0, 0.0, 0.0,0.0, 0.0, -480000000.0, 80000000.0, 1120000000.0, -200000000.0,-480000000.0, 120000000.0],
[0.0, 0.0, -200000000.0, 0.0, 200000000.0, -426666666.7, 0.0, 0.0,0.0, 0.0, 120000000.0, -180000000.0, -200000000.0, 786666666.7,80000000.0, -180000000.0],
[0.0, 0.0, 0.0, 0.0, 0.0, -200000000.0, -80000000.0, 120000000.0,0.0, 0.0, 0.0, 0.0, -480000000.0, 80000000.0, 560000000.0, 0.0],
[0.0, 0.0, 0.0, 0.0, -200000000.0, 0.0, 80000000.0, -213333333.3,0.0, 0.0, 0.0, 0.0, 120000000.0, -180000000.0, 0.0, 393333333.3]])
x = [sp.var('dx'+ str(i+1)) for i in range(8)]
y = [sp.var('dy'+ str(i+1)) for i in range(8)]
fx = [sp.var('fx'+ str(i+1)) for i in range(8)]
fy = [sp.var('fy'+ str(i+1)) for i in range(8)]
xy = list(sum(zip(x, y), ()))
fxy = list(sum(zip(fx, fy), ()))
M = sp.Matrix(K)*sp.Matrix(xy)
Ec = [sp.Eq(M[i], fxy[i]) for i in range(16)]
#known values
d_kwn = [(dy1, 0), (dy2, 0), (dy3, 0), (dy4, 0)]
f_kwn = [(fx5, 0), (fy5, 0), (fx6, 0), (fy6, -3000), (fx7, 0), (fy7, -3000),(fx8, 0), (fy8, 0), (fx1, 0), (fx2, 0), (fx3, 0), (fx4, 0)]
for var in d_kwn:
for i, eq in enumerate(Ec):
Ec[i] = eq.subs(var[0], var[1])
for var in f_kwn:
for i, eq in enumerate(Ec):
Ec[i] = eq.subs(var[0], var[1])
Sols = sp.solvers.solve(Ec)
sp.Matrix(sorted(Sols.items(), key=str))
And this is the output I'm getting:
{dx1: dx8−3.54468009860439⋅10−6,
dx2: dx8−1.8414987360977⋅10−6,
dx3: dx8−2.11496606381994⋅10−7,
dx4: dx8+2.05943267588118⋅10−7,
dx5: dx8−1.24937663359153⋅10−6,
dx6: dx8−1.55655946713284⋅10−6,
dx7: dx8−1.08797652070783⋅10−6,
dy5: −2.10639657360695⋅10−6,
dy6: −6.26959460018537⋅10−6,
dy7: −6.32191585665888⋅10−6,
dy8: −2.7105825114088⋅10−6,
fy1: 439.746516706791,
fy2: 2640.65618690176,
fy3: 2399.44807607611,
fy4: 520.14922031534}
I don't know why I'm not getting a result for dx8. I tried adding more equations because theoretically: dx1 = dx4, dx2 = dx3, dx5 = dx8, dx6 = dx7 and so on. But it gives me and empty list.
Any help will be appreciated.
If you need to use Sympy, then the following may work. First we can solve the reduced system of equations only for unknown d values. Then once we know all d values we can calculate the unknown f values by doing [K][d]=[f] for only the unknown f equation numbers (not implemented in the code below).
import sympy as sp
import numpy as np
K = np.array([[560000000.0, 0.0, -480000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0,-80000000.0, 120000000.0, 0.0, -200000000.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 393333333.3, 120000000.0, -180000000.0, 0.0, 0.0, 0.0, 0.0,80000000.0, -213333333.3, -200000000.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[-480000000.0, 120000000.0, 1120000000.0, -200000000.0,-480000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0, -160000000.0,200000000.0, 0.0, -200000000.0, 0.0, 0.0],
[80000000.0, -180000000.0, -200000000.0, 786666666.7, 120000000.0,-180000000.0, 0.0, 0.0, 0.0, 0.0, 200000000.0, -426666666.7,-200000000.0, 0.0, 0.0, 0.0],
[0.0, 0.0, -480000000.0, 120000000.0, 1120000000.0, -200000000.0,-480000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0, -160000000.0,200000000.0, 0.0, -200000000.0],
[0.0, 0.0, 80000000.0, -180000000.0, -200000000.0, 786666666.7,120000000.0, -180000000.0, 0.0, 0.0, 0.0, 0.0, 200000000.0,-426666666.7, -200000000.0, 0.0],
[0.0, 0.0, 0.0, 0.0, -480000000.0, 120000000.0, 560000000.0,-200000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -80000000.0, 80000000.0],
[0.0, 0.0, 0.0, 0.0, 80000000.0, -180000000.0, -200000000.0,393333333.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 120000000.0,-213333333.3],
[-80000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 560000000.0,-200000000.0, -480000000.0, 120000000.0, 0.0, 0.0, 0.0, 0.0],
[120000000.0, -213333333.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-200000000.0, 393333333.3, 80000000.0, -180000000.0, 0.0, 0.0, 0.0,0.0],
[0.0, -200000000.0, -160000000.0, 200000000.0, 0.0, 0.0, 0.0, 0.0,-480000000.0, 80000000.0, 1120000000.0, -200000000.0, -480000000.0,120000000.0, 0.0, 0.0],
[-200000000.0, 0.0, 200000000.0, -426666666.7, 0.0, 0.0, 0.0, 0.0,120000000.0, -180000000.0, -200000000.0, 786666666.7, 80000000.0,-180000000.0, 0.0, 0.0],
[0.0, 0.0, 0.0, -200000000.0, -160000000.0, 200000000.0, 0.0, 0.0,0.0, 0.0, -480000000.0, 80000000.0, 1120000000.0, -200000000.0,-480000000.0, 120000000.0],
[0.0, 0.0, -200000000.0, 0.0, 200000000.0, -426666666.7, 0.0, 0.0,0.0, 0.0, 120000000.0, -180000000.0, -200000000.0, 786666666.7,80000000.0, -180000000.0],
[0.0, 0.0, 0.0, 0.0, 0.0, -200000000.0, -80000000.0, 120000000.0,0.0, 0.0, 0.0, 0.0, -480000000.0, 80000000.0, 560000000.0, 0.0],
[0.0, 0.0, 0.0, 0.0, -200000000.0, 0.0, 80000000.0, -213333333.3,0.0, 0.0, 0.0, 0.0, 120000000.0, -180000000.0, 0.0, 393333333.3]])
x = [sp.var('dx'+ str(i+1)) for i in range(8)]
y = [sp.var('dy'+ str(i+1)) for i in range(8)]
fx = [sp.var('fx'+ str(i+1)) for i in range(8)]
fy = [sp.var('fy'+ str(i+1)) for i in range(8)]
xy = list(sum(zip(x, y), ()))
fxy = list(sum(zip(fx, fy), ()))
M = sp.Matrix(K)*sp.Matrix(xy)
Ec = [sp.Eq(M[i], fxy[i]) for i in range(16)]
#known values
d_kwn = [(dy1, 0), (dy2, 0), (dy3, 0), (dy4, 0)]
f_kwn = [(fx5, 0), (fy5, 0), (fx6, 0), (fy6, -3000), (fx7, 0), (fy7, -3000),(fx8, 0), (fy8, 0), (fx1, 0), (fx2, 0), (fx3, 0), (fx4, 0)]
for var in d_kwn:
for i, eq in enumerate(Ec):
Ec[i] = eq.subs(var[0], var[1])
for var in f_kwn:
for i, eq in enumerate(Ec):
Ec[i] = eq.subs(var[0], var[1])
Ec_part = []
for i in [0,2,4,6,8,9,10,11,12,13,14,15]:
Ec_part.append(Ec[i])
unknwns = [*x, *y[4:8]]
Sols = sp.linsolve(Ec_part,unknwns)
Sols = next( iter(Sols) )
#sp.Matrix(sorted(Sols.items(), key=str))
It is convenient to solve system of linear equations in Numpy itself. The type of system you are solving appears in Finite Element Analysis often with boundary conditions. Is it fine if we only use Numpy? If yes, the following code will do the job. We already know which elements of f and d are known we can use Numpy array indexing to solve the reduced set of equations as follows:
import numpy as np
# The NxN Coefficients matrix
K = np.array([[560000000.0, 0.0, -480000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0,-80000000.0, 120000000.0, 0.0, -200000000.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 393333333.3, 120000000.0, -180000000.0, 0.0, 0.0, 0.0, 0.0,80000000.0, -213333333.3, -200000000.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[-480000000.0, 120000000.0, 1120000000.0, -200000000.0,-480000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0, -160000000.0,200000000.0, 0.0, -200000000.0, 0.0, 0.0],
[80000000.0, -180000000.0, -200000000.0, 786666666.7, 120000000.0,-180000000.0, 0.0, 0.0, 0.0, 0.0, 200000000.0, -426666666.7,-200000000.0, 0.0, 0.0, 0.0],
[0.0, 0.0, -480000000.0, 120000000.0, 1120000000.0, -200000000.0,-480000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0, -160000000.0,200000000.0, 0.0, -200000000.0],
[0.0, 0.0, 80000000.0, -180000000.0, -200000000.0, 786666666.7,120000000.0, -180000000.0, 0.0, 0.0, 0.0, 0.0, 200000000.0,-426666666.7, -200000000.0, 0.0],
[0.0, 0.0, 0.0, 0.0, -480000000.0, 120000000.0, 560000000.0,-200000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -80000000.0, 80000000.0],
[0.0, 0.0, 0.0, 0.0, 80000000.0, -180000000.0, -200000000.0,393333333.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 120000000.0,-213333333.3],
[-80000000.0, 80000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 560000000.0,-200000000.0, -480000000.0, 120000000.0, 0.0, 0.0, 0.0, 0.0],
[120000000.0, -213333333.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-200000000.0, 393333333.3, 80000000.0, -180000000.0, 0.0, 0.0, 0.0,0.0],
[0.0, -200000000.0, -160000000.0, 200000000.0, 0.0, 0.0, 0.0, 0.0,-480000000.0, 80000000.0, 1120000000.0, -200000000.0, -480000000.0,120000000.0, 0.0, 0.0],
[-200000000.0, 0.0, 200000000.0, -426666666.7, 0.0, 0.0, 0.0, 0.0,120000000.0, -180000000.0, -200000000.0, 786666666.7, 80000000.0,-180000000.0, 0.0, 0.0],
[0.0, 0.0, 0.0, -200000000.0, -160000000.0, 200000000.0, 0.0, 0.0,0.0, 0.0, -480000000.0, 80000000.0, 1120000000.0, -200000000.0,-480000000.0, 120000000.0],
[0.0, 0.0, -200000000.0, 0.0, 200000000.0, -426666666.7, 0.0, 0.0,0.0, 0.0, 120000000.0, -180000000.0, -200000000.0, 786666666.7,80000000.0, -180000000.0],
[0.0, 0.0, 0.0, 0.0, 0.0, -200000000.0, -80000000.0, 120000000.0,0.0, 0.0, 0.0, 0.0, -480000000.0, 80000000.0, 560000000.0, 0.0],
[0.0, 0.0, 0.0, 0.0, -200000000.0, 0.0, 80000000.0, -213333333.3,0.0, 0.0, 0.0, 0.0, 120000000.0, -180000000.0, 0.0, 393333333.3]])
# A logical array for indexing
N = K.shape[0] # The number of columns in K
N_2 = int(N/2);
# Prepare the 'f'
fx = np.zeros( N_2 );
fy = np.zeros( N_2 );
fx[ [0,1,2,3,4,5,6,7] ] = np.array([0]*N_2) # Known values of fx
fy[ [4,5,6,7] ] = np.array([0,-3000,-3000,0])
f = np.concatenate( (fx,fy) )
# Solve for the unknown equations only
d = np.zeros( N )
rows = np.array([0,1,2,3,4,5,6,7,12,13,14,15])
rows = rows[:, np.newaxis]
columns = np.array([0,1,2,3,4,5,6,7,12,13,14,15])
d[ columns ] = np.linalg.solve( K[ rows, columns ], f[ columns ] )
# Calculate unknown f values
f[ [8,9,10,11] ] = K[ [8,9,10,11], [8,9,10,11] ]*d[[8,9,10,11]]
I have a Long list of numbers like the following. I would like to find frequency distribution of each number, but I could not use Counter function to get frequency of each item, as they are integers and I get the error that it is not iterable , and therefore I could not convert the list to strings. I checked the similar questions but they did not work for me.
data=[1.0, 2.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 3.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 7.0, 1.0, 0.0, 0.0, 4.0, 3.0, 3.0, 1.0, 1.0, 2.0, 4.0, 0.0, 1.0, 7.0, 2.0, 1.0, 1.0, 4.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 2.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 10.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 2.0, 3.0, 0.0, 3.0, 2.0, 11.0, 0.0, 5.0, 2.0, 0.0, 1.0, 2.0, 1.0, 8.0, 1.0, 0.0, 6.0, 2.0, 4.0, 0.0, 17.0, 0.0, 27.0, 2.0, 2.0, 1.0, 1.0, 3.0, 2.0, 0.0, 0.0, 6.0, 0.0, 0.0, 1.0, 1.0, 2.0, 0.0, 10.0, 0.0, 0.0, 5.0, 7.0, 1.0, 0.0, 1.0, 2.0, 1.0, 5.0, 2.0, 1.0, 9.0, 1.0, 0.0, 2.0, 0.0, 1.0, 3.0, 1.0, 1.0, 0.0, 0.0, 3.0, 5.0, 2.0, 0.0, 1.0, 9.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 3.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 2.0, 0.0, 1.0, 1.0, 3.0, 1.0, 2.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 5.0, 2.0, 3.0, 2.0, 8.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 4.0, 1.0, 0.0, 2.0, 1.0, 1.0, 19.0, 0.0, 1.0, 0.0, 1.0, 2.0, 1.0, 2.0, 1.0, 1.0, 5.0, 4.0, 2.0, 0.0, 1.0, 2.0, 0.0, 5.0, 0.0, 0.0, 3.0, 1.0, 0.0, 1.0, 1.0, 0.0, 3.0, 2.0, 4.0, 10.0, 2.0, 1.0, 3.0, 1.0, 0.0, 2.0, 1.0, 1.0, 1.0, 1.0, 0.0, 2.0, 17.0, 0.0, 2.0, 3.0, 2.0, 1.0, 0.0, 2.0, 2.0, 1.0, 2.0, 5.0, 2.0, 1.0, 1.0, 1.0, 3.0, 0.0, 1.0, 1.0, 0.0, 4.0, 5.0, 2.0, 2.0, 1.0, 3.0, 0.0, 1.0, 3.0, 1.0, 1.0, 1.0, 0.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 3.0, 5.0, 0.0, 1.0, 4.0, 0.0, 0.0, 1.0, 6.09]
You could use something simple like:
def freq(lst):
d = {}
for i in lst:
if d.get(i):
d[i] += 1
else:
d[i] = 1
return d
results:
>>> freq(data)
{0.0: 72, 1.0: 106, 2.0: 40, 3.0: 21, 4.0: 9, 5.0: 10, 6.0: 2, 7.0: 3, 8.0: 2, 9.0: 2, 10.0: 3, 11.0: 1, 15.0: 1, 17.0: 2, 19.0: 1, 6.09: 1, 27.0: 1}
Though Counter worked fine for me (I copy-pasted the data that you posted):
...
>>> from collections import Counter
>>> Counter(data)
Counter({1.0: 106, 0.0: 72, 2.0: 40, 3.0: 21, 5.0: 10, 4.0: 9, 7.0: 3, 10.0: 3, 6.0: 2, 8.0: 2, 9.0: 2, 17.0: 2, 11.0: 1, 15.0: 1, 19.0: 1, 6.09: 1, 27.0: 1})
distribution ={i:data.count(i)/len(data) for i in set(data)}
I cannot find out the mistake I made, could anyone help me? Thanks very much!
import math
def GASSEM():
a0 = [12,-2,1,0,0,0,0,0,0,0,13.97]
a1 = [-2,12,-2,1,0,0,0,0,0,0,5.93]
a2 = [1,-2,12,-2,1,0,0,0,0,0,-6.02]
a3 = [0,1,-2,12,-2,1,0,0,0,0,8.32]
a4 = [0,0,1,-2,12,-2,1,0,0,0,-23.75]
a5 = [0,0,0,1,-2,12,-2,1,0,0,28.45]
a6 = [0,0,0,0,1,-2,12,-2,1,0,-8.9]
a7 = [0,0,0,0,0,1,-2,12,-2,1,-10.5]
a8 = [0,0,0,0,0,0,1,-2,12,-2,10.34]
a9 = [0,0,0,0,0,0,0,1,-2,12,-38.74]
A = [a0,a1,a2,a3,a4,a5,a6,a7,a8,a9] # 10x11 matrix
interchange=[0,0,0,0,0,0,0,0,0,0,0]
for i in range (1,10):
median = abs(A[i-1][i-1])
for m in range (i,10): #pivoting
if abs(A[m][i-1]) > median:
median = abs(A[m][i-1])
interchange = A[i-1]
A[i-1] = A[m]
A[m] = interchange
for j in range(i,10): #creating upper triangle matrix
A[j] = [A[j][k]-(A[j][i-1]/A[i-1][i-1])*A[i-1][k] for k in range(0,11)]
for t in range (0,10): #print the upper triangle matrix
print(A[t])
The output is not an upper triangle matrix, I'm getting lost in the for loops...
When I run this code, the output is
[12, -2, 1, 0, 0, 0, 0, 0, 0, 0, 13.97]
[0.0, 11.666666666666666, -1.8333333333333333, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.258333333333333]
[0.0, 0.0, 11.628571428571428, -1.842857142857143, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, -5.886428571428571]
[0.0, 0.0, -2.220446049250313e-16, 11.622235872235873, -1.8415233415233416, 1.0, 0.0, 0.0, 0.0, 0.0, 6.679281326781327]
[0.0, 0.0, -3.518258683818212e-17, 0.0, 11.622218698800275, -1.8415517150256329, 1.0, 0.0, 0.0, 0.0, -22.185475397706252]
[0.0, 0.0, 1.3530439218911067e-17, 0.0, 0.0, 11.62216239813737, -1.841549039580908, 1.0, 0.0, 0.0, 24.359991632712457]
[0.0, 0.0, 5.171101701700419e-18, 0.0, 0.0, 0.0, 11.622161705324444, -1.84154850220678, 1.0, 0.0, -3.131238144426707]
[0.0, 0.0, -3.448243038110395e-19, 0.0, 0.0, 0.0, 0.0, 11.62216144141611, -1.8415485389982904, 1.0, -13.0921440313208]
[0.0, 0.0, -4.995725026226573e-19, 0.0, 0.0, 0.0, 0.0, 0.0, 11.622161418001749, -1.8415485322346454, 8.534950160892514]
[0.0, 0.0, -4.9488445836100553e-20, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 11.622161417603511, -36.26114362292296]
This effectively is upper triangular. The absolute value of the 'non-zero' entries in the third column of the lower triangle are all less than 10e-15. Given that other values are 1 or greater, these small numbers look like floating point subtraction errors in A[j][k] - (A[j][i-1]/A[i-1][i-1])*A[i-1][k] that can be considered to be 0. Without more investigation, I don't know why the non-zero values are limited to this column.
For this data, the condition abs(A[m][i-1]) > median is never true, so the if block code is not tested.