Lost Clients PBI - powerbi-desktop

I am trying to get the number of lost clients per month. The code I'm using for the measure is set forth next:
`LostClientsRunningTotal =
VAR currdate = MAX('Date'[Date])
VAR turnoverinperiod=[Turnover]
VAR clients=
ADDCOLUMNS(
Client,
"Turnover Until Now",
CALCULATE([Turnover],
DATESINPERIOD(
'Date'[Date],
currdate,
-1,
MONTH)),
"Running Total Turnover",
[RunningTotalTurnover]
)
VAR lostclients=
FILTER(clients,
[Running Total Turnover]>0 &&
[Turnover Until Now]=0)
RETURN
IF(turnoverinperiod>0,
COUNTROWS(lostclients))`
The problem is that I'm getting the running total and the result it returns is the following:
enter image description here
What I need is the lost clients per month so I tried to use the dateadd function to get the lost clients of the previous month and then subtract the current.
The desired result would be, for Nov-22 for instance, 629 (December running total) - 544 (November running total) = 85.
For some reason the **dateadd **function is not returning the desired result and I can't make head or tails of it.
Can you tell me how should I approach this issue please? Thank you in advance.

Related

Pine script - Security function not show correct on different timeframe

I'm newbie and try to get ichimoku data on 4 hour timeframe but it not showing the correct value when I shift.
//#version=4
study(title="test1", overlay=true)
conversionPeriods = input(9, minval=1, title="Conversion Line Length")
basePeriods = input(26, minval=1, title="Base Line Length")
laggingSpan2Periods = input(52, minval=1, title="Leading Span B Length")
displacement = input(26, minval=1, title="Displacement")
donchian_M240(len) => avg(security(syminfo.tickerid, 'D' , lowest(len)), security(syminfo.tickerid, 'D', highest(len)))
tenkanSen_M240 = donchian_M240(conversionPeriods)
kijunSen_M240 = donchian_M240(basePeriods)
senkoSpanA_M240 = avg(tenkanSen_M240, kijunSen_M240)
plot(senkoSpanA_M240[25], title="senkoSpanA_M240[25]")
The value senkoSpanA_M240[25] keep changing when I'm in M5, M15, M30, H1, H4 or D1.
Can you help please?
the reason it keeps changing when you change time frames is because you are using a historical bar reference [25] on your senkoSpanA_M240.
This means it will look for the senkoSpanA_M240 condition that occurred 25 bars ago.
Depending on which time frame you are selecting, it will look back 25 bars of that time frame and perform the calculation.
What exactly are you trying to achieve by using the [25]?

Azure FaceAPI limits iteration to 20 items

I have a list of image urls from which I use MS Azure faceAPI to extract some features from the photos. The problem is that whenever I iterate more than 20 urls, it seems not to work on any url after the 20th one. There is no error shown. However, when I manually changed the range to iterate the next 20 urls, it worked.
Side note, on free version, MS Azure Face allows only 20 requests/minute; however, even when I let time sleep up to 60s per 10 requests, the problem still persists.
FYI, I have 360,000 urls in total, and sofar I have made only about 1000 requests.
Can anyone help tell me why this happens and how to solve this? Thank you so much!
# My codes
i = 0
for post in list_post[800:1000]:
i += 1
try:
image_url = post['photo_url']
headers = {'Ocp-Apim-Subscription-Key': KEY}
params = {
'returnFaceId': 'true',
'returnFaceLandmarks': 'false',
'returnFaceAttributes': 'age,gender,headPose,smile,facialHair,glasses,emotion,hair,makeup,occlusion,accessories,blur,exposure,noise',
}
response = requests.post(face_api_url, params=params, headers=headers, json={"url": image_url})
post['face_feature'] = response.json()[0]
except (KeyError, IndexError):
continue
if i % 10 == 0:
time.sleep(60)
The free version has a max of 30 000 request per month, your 356 000 faces will therefore take a year to run.
The standard version costs USD 1 per 1000 requests, giving a total cost of USD 360. This option supports 10 transactions per second.
https://azure.microsoft.com/en-au/pricing/details/cognitive-services/face-api/

Ramp and Hold Users for Some time and Ramp again

I have the following scenario to be load tested for a service and it does not seem to work as expected. My scenario is as follows.
Test with rampUsers(100) over 15 minutes duration
Hold the users for about 10 minutes holdFor(10 minutes)
Then again rampUsers(200) over 15 minutes duration
Hold the users for about 10 minutes holdFor(10 minutes)
Then again rampUsers(200) over 15 minutes duration
I am trying to use throttle option for this but it does not seem to work as expected
here is my code snippets combinations that I have tried so far
//NUM_USERS = 300
//DURATION = 15 minutes
//CONSTANT_DURATION = 5 minutes
// Tried with different combinations of NUM_USERS and DURATION but not helpful
scn.inject(
rampUsers(NUM_USERS*1) during DURATION,
constantUsersPerSec(1) during CONSTANT_DURATION,
rampUsers(NUM_USERS*2) during DURATION,
constantUsersPerSec(2) during CONSTANT_DURATION,
rampUsers(NUM_USERS*3) during DURATION,
constantUsersPerSec(3) during CONSTANT_DURATION
)
scn.inject(
rampUsers(NUM_USERS) during DURATION
).throttle(
reachRps(NUM_USERS/4) in (CONSTANT_DURATION),
holdFor(CONSTANT_DURATION),
jumpToRps(NUM_USERS/3),
holdFor(CONSTANT_DURATION),
jumpToRps(NUM_USERS/2),
holdFor(CONSTANT_DURATION)
)
scn.inject(
rampUsers(NUM_USERS) during DURATION
).throttle(
holdFor(CONSTANT_DURATION),
reachRps(NUM_USERS+NUM_USERS) in (DURATION+DURATION),
holdFor(CONSTANT_DURATION)
)
Can any one help on this which one works in this case. I would like to have a graph like this
To target injection rate as you stated you want in the comments, you need something like this
scn.inject(
rampUsersPerSec(0) to (300) during DURATION,
constantUsersPerSec(300) during CONSTANT_DURATION,
rampUsersPerSec(300) to (600) during DURATION,
constantUsersPerSec(600) during CONSTANT_DURATION,
...
)

how to choose certain elements of a matrix to create a new one with np.array?

I have a matrix called "times" of form (1,517) where are the times of a whole day 24 hours (in seconds Epoch time) and I want to create a new matrix with the times of each half hour, that is, starting from the first time then the one that corresponds to half hour later and so on until completing all the half hours that there are in a day, that is, 48
I created a delta of time with
dt = timedelta (hours = 0.5)
dts = timedelta.total_seconds (dt)
but I do not know how to do to indicate that my new matrix takes those elements
print(times.shape)
Out[4]: (1, 517)
print(times)
array([[1.55079361e+09, 1.55079377e+09, 1.55079394e+09, 1.55079410e+09,
1.55079430e+09, 1.55079446e+09, 1.55079462e+09, 1.55079479e+09,
1.55079495e+09, 1.55079512e+09, 1.55079528e+09, 1.55079544e+09,
1.55079561e+09, 1.55079577e+09, 1.55079594e+09, 1.55079614e+09,
1.55079630e+09, 1.55079646e+09, 1.55079663e+09, 1.55079679e+09,
1.55079695e+09, 1.55079712e+09, 1.55079728e+09, 1.55079744e+09,
1.55079761e+09, 1.55079781e+09, 1.55079797e+09, 1.55079814e+09,
1.55079830e+09, 1.55079846e+09, 1.55079863e+09, 1.55079879e+09,
1.55079895e+09, 1.55079912e+09, 1.55079928e+09, 1.55079945e+09,
1.55079964e+09, 1.55079981e+09, 1.55079997e+09, 1.55080014e+09,
1.55080030e+09, 1.55080046e+09, 1.55080063e+09, 1.55080079e+09,
1.55080096e+09, 1.55080112e+09, 1.55080128e+09, 1.55080148e+09,
1.55080164e+09, 1.55080181e+09, 1.55080197e+09, 1.55080214e+09,
1.55080230e+09, 1.55080246e+09, 1.55080263e+09, 1.55080279e+09,
1.55080296e+09, 1.55080312e+09, 1.55080332e+09, 1.55080348e+09,
1.55080364e+09, 1.55080381e+09, 1.55080397e+09, 1.55080414e+09,
1.55080430e+09, 1.55080446e+09, 1.55080463e+09, 1.55080479e+09,
1.55080496e+09, 1.55080516e+09, 1.55080532e+09, 1.55080548e+09,
1.55080565e+09, 1.55080581e+09, 1.55080597e+09, 1.55080614e+09,
1.55080630e+09, 1.55080646e+09, 1.55080663e+09, 1.55080683e+09,
1.55080699e+09, 1.55080716e+09, 1.55080732e+09, 1.55080748e+09,
1.55080765e+09, 1.55080781e+09, 1.55080797e+09, 1.55080814e+09,
1.55080830e+09, 1.55080847e+09, 1.55080866e+09, 1.55080883e+09,
1.55080899e+09, 1.55080916e+09, 1.55080932e+09, 1.55080948e+09,
1.55080965e+09, 1.55080981e+09, 1.55080998e+09, 1.55081014e+09,
1.55081030e+09, 1.55081050e+09, 1.55081066e+09, 1.55081083e+09,
1.55081099e+09, 1.55081116e+09, 1.55081132e+09, 1.55081148e+09,
1.55081165e+09, 1.55081181e+09, 1.55081198e+09, 1.55081214e+09,
1.55081234e+09, 1.55081250e+09, 1.55081266e+09, 1.55081283e+09,
1.55081299e+09, 1.55081316e+09, 1.55081332e+09, 1.55081348e+09,
1.55081365e+09, 1.55081381e+09, 1.55081398e+09, 1.55081418e+09,
1.55081434e+09, 1.55081450e+09, 1.55081467e+09, 1.55081483e+09,
1.55081499e+09, 1.55081516e+09, 1.55081532e+09, 1.55081548e+09,
1.55081565e+09, 1.55081585e+09, 1.55081601e+09, 1.55081618e+09,
1.55081634e+09, 1.55081650e+09, 1.55081667e+09, 1.55081683e+09,
1.55081699e+09, 1.55081716e+09, 1.55081732e+09, 1.55081749e+09,
1.55081768e+09, 1.55081785e+09, 1.55081801e+09, 1.55081818e+09,
1.55081834e+09, 1.55081850e+09, 1.55081867e+09, 1.55081883e+09,
1.55081900e+09, 1.55081916e+09, 1.55081932e+09, 1.55081952e+09,
1.55081968e+09, 1.55081985e+09, 1.55082001e+09, 1.55082018e+09,
1.55082034e+09, 1.55082050e+09, 1.55082067e+09, 1.55082083e+09,
1.55082100e+09, 1.55082116e+09, 1.55082136e+09, 1.55082152e+09,
1.55082168e+09, 1.55082185e+09, 1.55082201e+09, 1.55082218e+09,
1.55082234e+09, 1.55082250e+09, 1.55082267e+09, 1.55082283e+09,
1.55082300e+09, 1.55082320e+09, 1.55082336e+09, 1.55082352e+09,
1.55082369e+09, 1.55082385e+09, 1.55082401e+09, 1.55082418e+09,
1.55082434e+09, 1.55082450e+09, 1.55082467e+09, 1.55082487e+09,
1.55082503e+09, 1.55082520e+09, 1.55082536e+09, 1.55082552e+09,
1.55082569e+09, 1.55082585e+09, 1.55082601e+09, 1.55082618e+09,
1.55082634e+09, 1.55082651e+09, 1.55082670e+09, 1.55082687e+09,
1.55082703e+09, 1.55082720e+09, 1.55082736e+09, 1.55082752e+09,
1.55082769e+09, 1.55082785e+09, 1.55082802e+09, 1.55082818e+09,
1.55082834e+09, 1.55082854e+09, 1.55082870e+09, 1.55082887e+09,
1.55082903e+09, 1.55082920e+09, 1.55082936e+09, 1.55082952e+09,
1.55082969e+09, 1.55082985e+09, 1.55083002e+09, 1.55083018e+09,
1.55083038e+09, 1.55083054e+09, 1.55083070e+09, 1.55083087e+09,
1.55083103e+09, 1.55083120e+09, 1.55083136e+09, 1.55083152e+09,
1.55083169e+09, 1.55083185e+09, 1.55083202e+09, 1.55083222e+09,
1.55083238e+09, 1.55083254e+09, 1.55083271e+09, 1.55083287e+09,
1.55083303e+09, 1.55083320e+09, 1.55083336e+09, 1.55083352e+09,
1.55083369e+09, 1.55083389e+09, 1.55083405e+09, 1.55083422e+09,
1.55083438e+09, 1.55083454e+09, 1.55083471e+09, 1.55083487e+09,
1.55083503e+09, 1.55083520e+09, 1.55083536e+09, 1.55083553e+09,
1.55083572e+09, 1.55083589e+09, 1.55083605e+09, 1.55083622e+09,
1.55083638e+09, 1.55083654e+09, 1.55083671e+09, 1.55083687e+09,
1.55083704e+09, 1.55083720e+09, 1.55083736e+09, 1.55083756e+09,
1.55083772e+09, 1.55083789e+09, 1.55083805e+09, 1.55083822e+09,
1.55083838e+09, 1.55083854e+09, 1.55083871e+09, 1.55083887e+09,
1.55083904e+09, 1.55083920e+09, 1.55083940e+09, 1.55083956e+09,
1.55083972e+09, 1.55083989e+09, 1.55084005e+09, 1.55084022e+09,
1.55084038e+09, 1.55084054e+09, 1.55084071e+09, 1.55084087e+09,
1.55084104e+09, 1.55084124e+09, 1.55084140e+09, 1.55084156e+09,
1.55084173e+09, 1.55084189e+09, 1.55084205e+09, 1.55084222e+09,
1.55084238e+09, 1.55084254e+09, 1.55084271e+09, 1.55084291e+09,
1.55084307e+09, 1.55084324e+09, 1.55084340e+09, 1.55084356e+09,
1.55084373e+09, 1.55084389e+09, 1.55084405e+09, 1.55084422e+09,
1.55084438e+09, 1.55084455e+09, 1.55084474e+09, 1.55084491e+09,
1.55084507e+09, 1.55084524e+09, 1.55084540e+09, 1.55084556e+09,
1.55084573e+09, 1.55084589e+09, 1.55084606e+09, 1.55084622e+09,
1.55084638e+09, 1.55084658e+09, 1.55084674e+09, 1.55084691e+09,
1.55084707e+09, 1.55084724e+09, 1.55084740e+09, 1.55084756e+09,
1.55084773e+09, 1.55084789e+09, 1.55084806e+09, 1.55084822e+09,
1.55084842e+09, 1.55084858e+09, 1.55084874e+09, 1.55084891e+09,
1.55084907e+09, 1.55084924e+09, 1.55084940e+09, 1.55084956e+09,
1.55084973e+09, 1.55084989e+09, 1.55085006e+09, 1.55085026e+09,
1.55085042e+09, 1.55085058e+09, 1.55085075e+09, 1.55085091e+09,
1.55085107e+09, 1.55085124e+09, 1.55085140e+09, 1.55085156e+09,
1.55085173e+09, 1.55085193e+09, 1.55085209e+09, 1.55085226e+09,
1.55085242e+09, 1.55085258e+09, 1.55085275e+09, 1.55085291e+09,
1.55085307e+09, 1.55085324e+09, 1.55085340e+09, 1.55085357e+09,
1.55085376e+09, 1.55085393e+09, 1.55085409e+09, 1.55085426e+09,
1.55085442e+09, 1.55085458e+09, 1.55085475e+09, 1.55085491e+09,
1.55085508e+09, 1.55085524e+09, 1.55085540e+09, 1.55085560e+09,
1.55085576e+09, 1.55085593e+09, 1.55085609e+09, 1.55085626e+09,
1.55085642e+09, 1.55085658e+09, 1.55085675e+09, 1.55085691e+09,
1.55085708e+09, 1.55085724e+09, 1.55085744e+09, 1.55085760e+09,
1.55085776e+09, 1.55085793e+09, 1.55085809e+09, 1.55085826e+09,
1.55085842e+09, 1.55085858e+09, 1.55085875e+09, 1.55085891e+09,
1.55085908e+09, 1.55085928e+09, 1.55085944e+09, 1.55085960e+09,
1.55085977e+09, 1.55085993e+09, 1.55086009e+09, 1.55086026e+09,
1.55086042e+09, 1.55086058e+09, 1.55086075e+09, 1.55086095e+09,
1.55086111e+09, 1.55086128e+09, 1.55086144e+09, 1.55086160e+09,
1.55086177e+09, 1.55086193e+09, 1.55086209e+09, 1.55086226e+09,
1.55086242e+09, 1.55086259e+09, 1.55086278e+09, 1.55086295e+09,
1.55086311e+09, 1.55086328e+09, 1.55086344e+09, 1.55086360e+09,
1.55086377e+09, 1.55086393e+09, 1.55086410e+09, 1.55086426e+09,
1.55086442e+09, 1.55086462e+09, 1.55086478e+09, 1.55086495e+09,
1.55086511e+09, 1.55086528e+09, 1.55086544e+09, 1.55086560e+09,
1.55086577e+09, 1.55086593e+09, 1.55086610e+09, 1.55086626e+09,
1.55086646e+09, 1.55086662e+09, 1.55086678e+09, 1.55086695e+09,
1.55086711e+09, 1.55086728e+09, 1.55086744e+09, 1.55086760e+09,
1.55086777e+09, 1.55086793e+09, 1.55086810e+09, 1.55086830e+09,
1.55086846e+09, 1.55086862e+09, 1.55086879e+09, 1.55086895e+09,
1.55086911e+09, 1.55086928e+09, 1.55086944e+09, 1.55086960e+09,
1.55086977e+09, 1.55086997e+09, 1.55087013e+09, 1.55087030e+09,
1.55087046e+09, 1.55087062e+09, 1.55087079e+09, 1.55087095e+09,
1.55087111e+09, 1.55087128e+09, 1.55087144e+09, 1.55087161e+09,
1.55087180e+09, 1.55087197e+09, 1.55087213e+09, 1.55087230e+09,
1.55087246e+09, 1.55087262e+09, 1.55087279e+09, 1.55087295e+09,
1.55087312e+09, 1.55087328e+09, 1.55087344e+09, 1.55087364e+09,
1.55087380e+09, 1.55087397e+09, 1.55087413e+09, 1.55087430e+09,
1.55087446e+09, 1.55087462e+09, 1.55087479e+09, 1.55087495e+09,
1.55087512e+09, 1.55087528e+09, 1.55087548e+09, 1.55087564e+09,
1.55087580e+09, 1.55087597e+09, 1.55087613e+09, 1.55087630e+09,
1.55087646e+09, 1.55087662e+09, 1.55087679e+09, 1.55087695e+09,
1.55087712e+09, 1.55087732e+09, 1.55087748e+09, 1.55087764e+09,
1.55087781e+09, 1.55087797e+09, 1.55087813e+09, 1.55087830e+09,
1.55087846e+09, 1.55087862e+09, 1.55087879e+09, 1.55087899e+09,
1.55087915e+09, 1.55087932e+09, 1.55087948e+09, 1.55087964e+09,
1.55087981e+09]])
First we create an array with a date range between the first and last entry of times
t = np.arange(np.datetime64(datetime.datetime.fromtimestamp(times[0,0])), np.datetime64(datetime.datetime.fromtimestamp(times[0,-1])), np.timedelta64(30, 'm'))
Output for t
array(['2019-02-22T01:00:10.000000', '2019-02-22T01:30:10.000000',
'2019-02-22T02:00:10.000000', '2019-02-22T02:30:10.000000',
'2019-02-22T03:00:10.000000', '2019-02-22T03:30:10.000000',
'2019-02-22T04:00:10.000000', '2019-02-22T04:30:10.000000',
'2019-02-22T05:00:10.000000', '2019-02-22T05:30:10.000000',
'2019-02-22T06:00:10.000000', '2019-02-22T06:30:10.000000',
'2019-02-22T07:00:10.000000', '2019-02-22T07:30:10.000000',
'2019-02-22T08:00:10.000000', '2019-02-22T08:30:10.000000',
'2019-02-22T09:00:10.000000', '2019-02-22T09:30:10.000000',
'2019-02-22T10:00:10.000000', '2019-02-22T10:30:10.000000',
'2019-02-22T11:00:10.000000', '2019-02-22T11:30:10.000000',
'2019-02-22T12:00:10.000000', '2019-02-22T12:30:10.000000',
'2019-02-22T13:00:10.000000', '2019-02-22T13:30:10.000000',
'2019-02-22T14:00:10.000000', '2019-02-22T14:30:10.000000',
'2019-02-22T15:00:10.000000', '2019-02-22T15:30:10.000000',
'2019-02-22T16:00:10.000000', '2019-02-22T16:30:10.000000',
'2019-02-22T17:00:10.000000', '2019-02-22T17:30:10.000000',
'2019-02-22T18:00:10.000000', '2019-02-22T18:30:10.000000',
'2019-02-22T19:00:10.000000', '2019-02-22T19:30:10.000000',
'2019-02-22T20:00:10.000000', '2019-02-22T20:30:10.000000',
'2019-02-22T21:00:10.000000', '2019-02-22T21:30:10.000000',
'2019-02-22T22:00:10.000000', '2019-02-22T22:30:10.000000',
'2019-02-22T23:00:10.000000', '2019-02-22T23:30:10.000000',
'2019-02-23T00:00:10.000000', '2019-02-23T00:30:10.000000'],
dtype='datetime64[us]')
Now, we want to calculate this back to seconds. To do this, we create a lambda function which does this for a single element of the array and use np.apply_along_axis to perform this operation element-wise on the array.
f = lambda x: (x - np.datetime64('1970-01-01T00:00:00Z'))/np.timedelta64(1,'s')
np.apply_along_axis(f, 0, t)
output
array([1.55079721e+09, 1.55079901e+09, 1.55080081e+09, 1.55080261e+09,
1.55080441e+09, 1.55080621e+09, 1.55080801e+09, 1.55080981e+09,
1.55081161e+09, 1.55081341e+09, 1.55081521e+09, 1.55081701e+09,
1.55081881e+09, 1.55082061e+09, 1.55082241e+09, 1.55082421e+09,
1.55082601e+09, 1.55082781e+09, 1.55082961e+09, 1.55083141e+09,
1.55083321e+09, 1.55083501e+09, 1.55083681e+09, 1.55083861e+09,
1.55084041e+09, 1.55084221e+09, 1.55084401e+09, 1.55084581e+09,
1.55084761e+09, 1.55084941e+09, 1.55085121e+09, 1.55085301e+09,
1.55085481e+09, 1.55085661e+09, 1.55085841e+09, 1.55086021e+09,
1.55086201e+09, 1.55086381e+09, 1.55086561e+09, 1.55086741e+09,
1.55086921e+09, 1.55087101e+09, 1.55087281e+09, 1.55087461e+09,
1.55087641e+09, 1.55087821e+09, 1.55088001e+09, 1.55088181e+09])

Resampling Time Series Data (Pandas Python 3)

Trying to convert data at daily frequency to weekly frequency.
In:
weeklyaaapl = pd.DataFrame()
weeklyaapl['Open'] = aapl.Open.resample('W').iloc[0]
#here I am trying to take the first value of the aapl.Open,
#that falls within the week.
Out:
ValueError: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
I want the true open (the first open that prints for the week) (the open of the first day in that week).
It instead wants me to take the mean of the daily open values for a given week using .mean(), which is not the information I need.
Can't seem to interpret the error, documentation isn't helping either.
I think you need.
aapl.resample('W').first()
Output:
Open High Low Close Volume
Date
2010-01-10 30.49 30.64 30.34 30.57 123432050
2010-01-17 30.40 30.43 29.78 30.02 115557365
2010-01-24 29.76 30.74 29.61 30.72 182501620
2010-01-31 28.93 29.24 28.60 29.01 266424802
2010-02-07 27.48 28.00 27.33 27.82 187468421

Resources