What is the architecture of a scikit-learn MLPRegressor? - scikit-learn

I am using a MLPRegressor, and want to make sure I understand the architecture being fit.
Here is the model:
x_train, x_test, y_train, y_test = train_test_split(x_scaled[1:6000], y[1:6000], train_size=0.5, test_size=0.25)
mlp = neural_network.MLPRegressor(hidden_layer_sizes=(100, 20), activation="relu",
solver='adam', alpha=0.0001,
batch_size='auto', learning_rate="constant",
learning_rate_init=0.001,
max_iter=1000,tol=1e-4)
mlp.fit(x_train, y_train)
r = mlp.score(x_train, y_train)
y_predict = mlp.predict(x_test)
I want to check my understanding of the architecture here. Are there:
6 units in the input layer if I am using 6 inputs in x?
2 hidden layers of 1000 and 20 units respectively?
an output layer with 1 unit?

Almost (unless the 1000 units was a typo):
6 inputs in the input layer if the shape of X is (_, 6)
2 hidden layers with size 100 and 20, respectively
1 unit in the output layer since this is a regression task
More generally: these are properties that can be inspected using attributes of the neural_network.MLPRegressor object. For example:
from sklearn.neural_network import MLPRegressor
from sklearn.datasets import make_regression
X, y = make_regression(n_samples=1000, n_features=6)
nn = MLPRegressor(hidden_layer_sizes=(100, 20), activation="relu",
solver='adam', alpha=0.0001,
batch_size='auto', learning_rate="constant",
learning_rate_init=0.001,
max_iter=1000,tol=1e-4)
nn.fit(X, y)
print(f"Number of inputs: {nn.n_features_in_}")
print(f"Number of outputs: {nn.n_outputs_}")
print(f"Number of layers: {nn.n_layers_}")
print(f"Layer sizes: {[l.shape for l in nn.coefs_]}")
Which shows us the number of inputs, outputs, layers, and sizes for coefficients in the hidden layers:
Number of inputs: 6
Number of outputs: 1
Number of layers: 4
Layer sizes: [(6, 100), (100, 20), (20, 1)]

Related

How to Determine the Output Shape of a Conv2DTranspose of an AutoEncoder

I am building an autoencoder for learning 28 ultrasound time signals of shape [262144,2] i.e. 262144 pairs of time and voltage points concatenated to form a [262144x2] tensor as input data to a stacked convolutional encoder. The latent space is set to produce a vector of length 16. The problem arise from the decoder, where a 'for loop' is used to stack two Conv2DTranspose layers each with a filter sizes of 64 and 32 and a kernel of 3 to the latent space output in order to reproduce the original input shape of [262144x2]. Instead, the decoder network gives a [262144x4] output tensor which does not match the validation and input data shapes of [262144x2]. What model parameters (filter, kernel, strides and padding) should I use to get appropriate tensor dimensions? the code and output are shown below. Your assistance is greatly appreciated!
from keras.layers import Dense, Input
from keras.layers import Conv2D, Flatten
from keras.layers import Reshape, Conv2DTranspose
from keras.models import Model
from keras.datasets import mnist
from keras.utils import plot_model
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
x_Train = Signals
x_Test = Signals1
Sig_size1 = x_Train.shape[1]
Sig_size2 = x_Train.shape[2]
Sig_size11 = x_Test.shape[1]
Sig_size22 = x_Test.shape[2]
x_Train = np.reshape(x_Train,[-1, Sig_size1, Sig_size2, 1])
x_Train = x_Train.astype('float32') / np.max(x_Train)
x_Test = np.reshape(x_Test,[-1, Sig_size11, Sig_size22, 1])
x_Test = x_Test.astype('float32') / np.max(x_Test)
# network parameters# encoder/decoder number of filters per CNN layer
input_shape = (Sig_size1, Sig_size2, 1)
batch_size = 32 # Was 32
kernel_size = 1 # Was 3
latent_dim = 16 # Was 16
# encoder/decoder number of filters per CNN layer
layer_filters = [2, 6]
# build the autoencoder model
# first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
# stack of Conv2D(32)-Conv2D(64)
for filters in layer_filters:
x = Conv2D(filters=filters,
kernel_size=kernel_size,
strides=2,
activation='relu',
padding='same')(x)
shape = K.int_shape(x)
# generate latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)
# instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()
plot_model(encoder, to_file='encoder.png', show_shapes=True)
# build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
# use the shape (7, 7, 64) that was earlier saved
x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
# from vector to suitable shape for transposed conv
x = Reshape((shape[1], shape[2], shape[3]))(x)
# stack of Conv2DTranspose(64)-Conv2DTranspose(32)
layer_filters = [1,8] ########change
kernel_size = 3 # Was 3
# for filters in layer_filters[::-1]:
for filters in layer_filters[::-1]:
x = Conv2DTranspose(filters=filters,
kernel_size=kernel_size,
strides=2,
activation='relu',
padding='same')(x)
# layer_filters = [64, 32]
kernel_size = 3 # Was 3
# reconstruct the input
outputs = Conv2DTranspose(filters=1, #Was 1
kernel_size=kernel_size,
activation='sigmoid',
padding='same',
name='decoder_output')(x)
# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='decoder.png', show_shapes=True)
# autoencoder = encoder + decoder
# instantiate autoencoder model
autoencoder = Model(inputs,
decoder(encoder(inputs)),
name='autoencoder')
autoencoder.summary()
plot_model(autoencoder,
to_file='autoencoder.png',
show_shapes=True)
# Mean Square Error (MSE) loss funtion, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')
# train the autoencoder
autoencoder.fit(x_Train,
x_Train,
validation_data=(x_Test, x_Test),
epochs=1,
batch_size=batch_size)
# predict the autoencoder output from test data
x_decoded = autoencoder.predict(x_Test)
This code was adapted from Advanced Deep Learning with Keras by Rowel Atienza (Chapter 3 for a denoising decoder for MNIST data)

How to understand and debug the error inside keras.model.fit?

I am trying to implement a keras LSTM. I am getting an error inside keras.model.fit. I am not understanding what this error means. My code is given below -
print(x_train.shape)
print(y_train.shape)
word_input = Input(shape=(mxlen,), dtype="int32", name="word_input")
x1 = Embedding(len(vocab), 100, input_length=mxlen, weights=[embeddings], trainable=False)(word_input)
x1 = LSTM(100)(x1)
y = Dense(6, activation="softmax", name="main_output")(x1)
model = Model(inputs=[word_input], outputs=[y])
adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False)
model.compile(optimizer=adam,loss='categorical_crossentropy',metrics=['categorical_accuracy']) # have to look into it
model.fit(x_train, y_train, epochs=30, batch_size=40, verbose=1)
x_train and y_train has the following shape - (10240, 198) and (10240,).
I am getting the following error:
Your output layer has 6 outputs (probably 6 classes are given), but the target labels in y_train are given as integers, apparently (array is flat).
You need to convert y_train to a one-hot encoded array first, otherwise, the cross-entropy loss cannot be computed. Input and output tensors must always be compatible with the inputs and outputs of the model.
Given that there are 6 classes in y_train, encoded as:
0,1,2,3,4,5
you require a conversion:
0 -> 1.,0.,0.,0.,0.,0.
1 -> 0.,1.,0.,0.,0.,0.
etc.
Try it like this:
import tf.keras.backend as K
...
num_classes = 6
y_one_hot = K.one_hot( y_train, num_classes )
....
model.fit(x_train, y_one_hot, epochs=30, batch_size=40, verbose=1)

Autoencoder with 3D convolutions and convolutional LSTMs

I have implemented a variational autoencoder with CNN layers in the encoder and decoder. The code is shown below. My training data (train_X) consists of 40'000 images with size 64 x 80 x 1 and my validation data (valid_X) consists of 4500 images of size 64 x 80 x 1.
I would like to adapt my network in the following two ways:
Instead of using 2D convolutions (Conv2D and Conv2DTranspose) I would like to use 3D convolutions to take time into account (as the third dimension). For that I would like to use slices of 10 images, i.e. I will have images of size 64 x 80 x 1 x 10. Can I just use Conv3D and Conv3DTranspose or are other changes necessary?
I would like to try out convolutional LSTMs (ConvLSTM2D) in the encoder and decoder instead of plain 2D convolutions. Again, the input size of the images would be 64 x 80 x 1 x 10 (i.e. time series of 10 images). How can I adapt my network to work with ConvLSTM2D?
import keras
from keras import backend as K
from keras.layers import (Dense, Input, Flatten)
from keras.layers import Lambda, Conv2D
from keras.models import Model
from keras.layers import Reshape, Conv2DTranspose
from keras.losses import mse
def sampling(args):
z_mean, z_log_var = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
inner_dim = 16
latent_dim = 6
image_size = (64,78,1)
inputs = Input(shape=image_size, name='encoder_input')
x = inputs
x = Conv2D(32, 3, strides=2, activation='relu', padding='same')(x)
x = Conv2D(64, 3, strides=2, activation='relu', padding='same')(x)
# shape info needed to build decoder model
shape = K.int_shape(x)
# generate latent vector Q(z|X)
x = Flatten()(x)
x = Dense(inner_dim, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])
# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(inner_dim, activation='relu')(latent_inputs)
x = Dense(shape[1] * shape[2] * shape[3], activation='relu')(x)
x = Reshape((shape[1], shape[2], shape[3]))(x)
x = Conv2DTranspose(64, 3, strides=2, activation='relu', padding='same')(x)
x = Conv2DTranspose(32, 3, strides=2, activation='relu', padding='same')(x)
outputs = Conv2DTranspose(filters=1, kernel_size=3, activation='sigmoid', padding='same', name='decoder_output')(x)
# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')
def vae_loss(x, x_decoded_mean):
reconstruction_loss = mse(K.flatten(x), K.flatten(x_decoded_mean))
reconstruction_loss *= image_size[0] * image_size[1]
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
return vae_loss
optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.000)
vae.compile(loss=vae_loss, optimizer=optimizer)
vae.fit(train_X, train_X,
epochs=500,
batch_size=128,
verbose=1,
shuffle=True,
validation_data=(valid_X, valid_X))
Thank you very much for the help. I really appreciate it.
Have your input shape as (10, 64 , 80, 1) and just replace the layers.
The boring part is to organize the input data, if you're going to use sliding windows or just reshape from (images, 64,80,1) to (images//10, 10, 64,80,1).
Sliding windows (Overlapping) or not?
1 - Ok.... if you want your model to understand individual segments of 10 images you may overlap or not. Your choice. Performance may be better with overlapping, but not necessarily.
There isn't really an order in the images, as long as the 10 frames are in order.
This is supported by Conv3D and by LSTM with stateful=False.
2 - But if you want your model to understand the entire sequence, dividing the sequences only because of memory, only LSTM with stateful=True can support this.
(A Conv3D with kernel size = (frames, w, h) will work, but limited to frames, never understanding sequences longer than frames. It may still be capable of detecting the existence of punctual events, though, but not long sequence relationships)
In this case, for the LSTM you will need to:
set shuffle = False in training
use a fixed batch size of sequences
not overlap images
create a manual training loop where you do model.reset_states() every time you are giving "new sequences" for training AND predicting
The loop structure would be:
for epoch in range(epochs):
for group_of_sequences in range(groups):
model.reset_states()
sequences = getAGroupOfCompleteSequences() #shape (sequences, total_length, ....)
for batch in range(slide_divisions):
batch = sequences[:,10*batch : 10*(batch+1)]
model.train_on_batch(batch, ....)

CIFAR10 example : Keras

I am a total beginner and trying to implement image classifier using CIFAR 10 data set using Keras, i used the following code here, i learnt how it works and
I tried this small snippet of code for learning to implement CIFAR 10 but its not working, its not giving any error but the process doesn't start at all. I don't know what am i missing here.
'''
#Train a simple deep CNN on the CIFAR10 small images dataset.
It gets to 75% validation accuracy in 25 epochs, and 79% after 50 epochs.
(it's still underfitting at that point, though).
'''
from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
import os
batch_size = 32
num_classes = 10
epochs = 100
data_augmentation = True
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_cifar10_trained_model.h5'
# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
zca_epsilon=1e-06, # epsilon for ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
# randomly shift images horizontally (fraction of total width)
width_shift_range=0.1,
# randomly shift images vertically (fraction of total height)
height_shift_range=0.1,
shear_range=0., # set range for random shear
zoom_range=0., # set range for random zoom
channel_shift_range=0., # set range for random channel shifts
# set mode for filling points outside the input boundaries
fill_mode='nearest',
cval=0., # value used for fill_mode = "constant"
horizontal_flip=True, # randomly flip images
vertical_flip=False, # randomly flip images
# set rescaling factor (applied before any other transformation)
rescale=None,
# set function that will be applied on each input
preprocessing_function=None,
# image data format, either "channels_first" or "channels_last"
data_format=None,
# fraction of images reserved for validation (strictly between 0 and 1)
validation_split=0.0)
# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
workers=4)
# Save model and weights
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
Response on Python Ide 3.6.8 :
Python 3.6.8 (tags/v3.6.8:3c6b436a57, Dec 24 2018, 00:16:47) [MSC v.1916 64
bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>>
======================== RESTART: D:\TrainTheModel.py ========================
Using TensorFlow backend.
x_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples
Using real-time data augmentation.
Epoch 1/100
=============================== RESTART: Shell ===============================
>>>
I fixed your errors. If you using TensorFlow as backend, better use Keras from TensorFlow libraries.
# Train a simple deep CNN on the CIFAR10 small images dataset.
# It gets to 75% validation accuracy in 25 epochs, and 79% after 50 epochs.
# (it's still underfitting at that point, though).
from __future__ import print_function
from tensorflow.keras.utils import to_categorical
from tensorflow.python.keras import optimizers
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
import os
batch_size = 32
num_classes = 10
epochs = 100
data_augmentation = True
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_cifar10_trained_model.h5'
# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = optimizers.rmsprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
zca_epsilon=1e-06, # epsilon for ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
# randomly shift images horizontally (fraction of total width)
width_shift_range=0.1,
# randomly shift images vertically (fraction of total height)
height_shift_range=0.1,
shear_range=0., # set range for random shear
zoom_range=0., # set range for random zoom
channel_shift_range=0., # set range for random channel shifts
# set mode for filling points outside the input boundaries
fill_mode='nearest',
cval=0., # value used for fill_mode = "constant"
horizontal_flip=True, # randomly flip images
vertical_flip=False, # randomly flip images
# set rescaling factor (applied before any other transformation)
rescale=None,
# set function that will be applied on each input
preprocessing_function=None,
# image data format, either "channels_first" or "channels_last"
data_format=None,
# fraction of images reserved for validation (strictly between 0 and 1)
validation_split=0.0)
# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
workers=4)
# Save model and weights
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
Response (For test I use only 2 epochs):
x_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples
Using real-time data augmentation.
Epoch 1/2
2019-02-09 16:26:13.219359: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: GeForce GTX 750 major: 5 minor: 0 memoryClockRate(GHz): 1.137
pciBusID: 0000:04:00.0
totalMemory: 1.95GiB freeMemory: 1.32GiB
2019-02-09 16:26:13.219405: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-02-09 16:26:13.550797: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-02-09 16:26:13.550848: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2019-02-09 16:26:13.550865: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2019-02-09 16:26:13.551055: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 1059 MB memory) -> physical GPU (device: 0, name: GeForce GTX 750, pci bus id: 0000:04:00.0, compute capability: 5.0)
1563/1563 [==============================] - 44s 28ms/step - loss: 1.8483 - acc: 0.3220 - val_loss: 1.5551 - val_acc: 0.4414
Epoch 2/2
1563/1563 [==============================] - 42s 27ms/step - loss: 1.5651 - acc: 0.4263 - val_loss: 1.3814 - val_acc: 0.5065
Saved trained model at /home/mid/Documents/saved_models/keras_cifar10_trained_model.h5
10000/10000 [==============================] - 2s 189us/step
Test loss: 1.3814242065429687
Test accuracy: 0.5065

Keras LSTM predict 1 timestep at a time

Edited to add:
I found what I think is a working solution: https://bleyddyn.github.io/posts/2017/10/keras-lstm/
I'm trying to use a Conv/LSTM network for controlling a robot. I think I have everything set up so I could start training it on batches of data from a replay memory, but I can't figure out how to actually use it to control a robot. Simplified test code is below.
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten, Input
from keras.layers import Convolution2D
from keras.layers.recurrent import LSTM
from keras.layers.wrappers import TimeDistributed
from keras.utils import to_categorical
def make_model(num_actions, timesteps, input_dim, l2_reg=0.005 ):
input_shape=(timesteps,) + input_dim
model = Sequential()
model.add(TimeDistributed( Convolution2D(8, (3, 3), strides=(2,2), activation='relu' ), input_shape=input_shape) )
model.add(TimeDistributed( Convolution2D(16, (3, 3), strides=(2,2), activation='relu', ) ))
model.add(TimeDistributed( Convolution2D(32, (3, 3), strides=(2,2), activation='relu', ) ))
model.add(TimeDistributed(Flatten()))
model.add(LSTM(512, return_sequences=True, activation='relu', unroll=True))
model.add(Dense(num_actions, activation='softmax', ))
model.compile(loss='categorical_crossentropy', optimizer='adam' )
return model
batch_size = 16
timesteps = 10
num_actions = 6
model = make_model( num_actions, timesteps, (84,84,3) )
model.summary()
# Fake training batch. Would be pulled from a replay memory
batch = np.random.uniform( low=0, high=255, size=(batch_size,timesteps,84,84,3) )
y = np.random.randint( 0, high=5, size=(160) )
y = to_categorical( y, num_classes=num_actions )
y = y.reshape( batch_size, timesteps, num_actions )
# stateful should be false here
pred = model.train_on_batch( batch, y )
# move trained network to robot
# This works, but it isn't practical to not get outputs (actions) until after 10 timesteps and I don't think the LSTM internal state would be correct if I tried a rolling queue of input images.
batch = np.random.uniform( low=0, high=255, size=(1,timesteps,84,84,3) )
pred = model.predict( batch, batch_size=1 )
# This is what I would need to do on my robot, with the LSTM keeping state between calls to predict
max_time = 10 # or 100000, or forever, etc.
for i in range(max_time) :
image = np.random.uniform( low=0, high=255, size=(1,1,84,84,3) ) # pull one image from camera
# stateful should be true here
pred = model.predict( image, batch_size=1 )
# take action based on pred
The error I get on the "model.predict( image..." line is:
ValueError: Error when checking : expected time_distributed_1_input to have shape (None, 10, 84, 84, 3) but got array with shape (1, 1, 84, 84, 3)
Which is understandable, but I can't find a way around it.
I don't know Keras well enough to even know if I'm using the TimeDistributed layers correctly.
So, is this even possible in Keras? If so, how?
If not, is it possible in TF or PyTorch?
Thanks for any suggestions!
Edited to add running code, although it's not necessarily correct. Still needs to be tested on an OpenAI gym task.
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten, Input
from keras.layers import Convolution2D
from keras.layers.recurrent import LSTM
from keras.layers.wrappers import TimeDistributed
from keras.utils import to_categorical
def make_model(num_actions, timesteps, input_dim, l2_reg=0.005 ):
input_shape=(1,None) + input_dim
model = Sequential()
model.add(TimeDistributed( Convolution2D(8, (3, 3), strides=(2,2), activation='relu' ), batch_input_shape=input_shape) )
model.add(TimeDistributed( Convolution2D(16, (3, 3), strides=(2,2), activation='relu', ) ))
model.add(TimeDistributed( Convolution2D(32, (3, 3), strides=(2,2), activation='relu', ) ))
model.add(TimeDistributed(Flatten()))
model.add(LSTM(512, return_sequences=True, activation='relu', stateful=True))
model.add(Dense(num_actions, activation='softmax', ))
model.compile(loss='categorical_crossentropy', optimizer='adam' )
return model
batch_size = 16
timesteps = 10
num_actions = 6
model = make_model( num_actions, 1, (84,84,3) )
model.summary()
# Fake training batch. Would be pulled from a replay memory
batch = np.random.uniform( low=0, high=255, size=(batch_size,timesteps,84,84,3) )
y = np.random.randint( 0, high=5, size=(160) )
y = to_categorical( y, num_classes=num_actions )
y = y.reshape( batch_size, timesteps, num_actions )
# Need to find a way to prevent the optimizer from updating every b, but accumulate updates over an entire batch (batch_size).
for b in range(batch_size):
pred = model.train_on_batch( np.reshape(batch[b,:], (1,timesteps,84,84,3)), np.reshape(y[b,:], (1,timesteps,num_actions)) )
#for t in range(timesteps):
# pred = model.train_on_batch( np.reshape(batch[b,t,:], (1,1,84,84,3)), np.reshape(y[b,t,:], (1,1,num_actions)) )
model.reset_states() # Don't carry internal state between batches
# move trained network to robot
# This works, but it isn't practical to not get outputs (actions) until after 10 timesteps
#batch = np.random.uniform( low=0, high=255, size=(1,timesteps,84,84,3) )
#pred = model.predict( batch, batch_size=1 )
# This is what I would need to do on my robot, with the LSTM keeping state between calls to predict
max_time = 10 # or 100000, or forever, etc.
for i in range(max_time) :
image = np.random.uniform( low=0, high=255, size=(1,1,84,84,3) ) # pull one image from camera
# stateful should be true here
pred = model.predict( image, batch_size=1 )
# take action based on pred
print( pred )
The first thing you need is to understand your data.
Do these 5 dimensions mean anything?
I'll try to guess:
- 1 learning example
- 1 time step (this is added by TimeDistributed, normal 2D convolutions don't take this)
- 84 image side
- 84 another image side
- 3 channels (RGB)
The purpose of TimeDistributed is to add that extra timesteps dimension, so you can simulate a sequence in layers that are not supposed to work with sequences.
Your error message is telling you this:
Your input_shape parameter is (None, 10, 84, 84, 3), where None is the batch size (number of samples/examples).
Your input data, which is batch in your code is (1, 1, 84, 84, 3).
There is a mismatch, you are supposed to use batches containing 10 time steps (as defined by your input_shape). It's ok for the stateful=False model to pack 10 images in a batch and train with that.
But later, in the stateful=True case, you will need that input_shape to be just one step. (You either create a new model just for predicting and copy all weights from the training model to the predicting model, or you can try to use None in that time steps dimension, meaning you can train and predict with different amounts of time steps)
Now, differently from the convolutionals, the LSTM layer is already expecting time steps. So you should find a way to squeeze your data in less dimensions.
The LSTM will expect (None, timeSteps, features). The time steps are the same as the previous. 10 for training, 1 for predicting, and you could try to go with None there.
So, instead of a Flatten() inside a TimeDistributed, you should simply reshape the data, condensing the dimensions that are not batch size or steps:
model.add(Reshape((8,9*9*32))) #the batch size doesn't participate in this definition, and it will remain as it is.
The 9*9*32 are the sides of the preceding convolutional and its 32 filters. (I'm just not sure the sides are 9, maybe they're 8, you can see in the current model.summary()).
Finally, for the stateful=True case, you will have to define the model with batch_shape instead of input_shape. The amount of samples in a batch must be a fixed number, because the model will assume the samples in the second batch are new steps belonging to the samples in the previous batch. (The number of samples will then need to be the same for all batches).

Resources