Related
Reading the Monad chapter in "Programming in Haskell" 2nd ed. from Graham Hutton, I found this example on page 167 to illustrate the behaviour of the List Monad:
> pairs [1,2] [3,4]
[(1,3),(1,4),(2,3),(2,4)]
With pairs defined like this:
pairs :: [a] -> [b] -> [(a,b)]
pairs xs ys = do x <- xs
y <- ys
return (x,y)
And this implementation of bind:
instance Monad [] where
-- (>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = [y | x <- xs, y <- f x]
I tried to understand with pencil and paper how the example worked out, but didn't get it.
Then I found, that in other books the bind operation is defined differently:
...
xs >>= f = concat (fmap f xs)
With this definition I understand why the example works.
But the first definition is the one I found on hackage in the prelude, so I trust its correct.
My question:
Can anybody explain why the first definition is equivalent to the second? (Where does the concat-stuff happen in the first one?)
List comprehensions are just syntactic sugar. Basically, [f x y | x<-l, y<-m] is sugar for
concatMap (\x -> concatMap (\y -> return $ f x y) m) l
or equivalently
concat $ fmap (\x -> concat $ fmap (\y -> return $ f x y) m) l
thus the two implementations are indeed equivalent by definition.
Anyway you can of course manually evaluate the example from the comprehension-based definition, using “intuitive set comprehension” evaluation:
pairs [1,2] [3,4]
≡ do { x <- [1,2]; y <- [3,4]; return (x,y) }
≡ [1,2] >>= \x -> [3,4] >>= \y -> return (x,y)
≡ [p | x<-[1,2], p <- (\ξ -> [3,4] >>= \y -> return (ξ,y)) x]
≡ [p | x<-[1,2], p <- ([3,4] >>= \y -> return (x,y))]
≡ [p | x<-[1,2], p <- [q | y<-[3,4], q <- (\υ -> return (x,υ)) y]]
≡ [p | x<-[1,2], p <- [q | y<-[3,4], q <- return (x,y)]]
≡ [p | x<-[1,2], p <- [q | y<-[3,4], q <- [(x,y)]]]
≡ [p | x<-[1,2], p <- [(x,3), (x,4)]]
≡ [(1,3), (1,4)] ++ [(2,3), (2,4)]
≡ [(1,3), (1,4), (2,3), (2,4)]
[y | x <- xs, y <- f x] takes all the xs in xs one-by-one and
apply f to them, which is a monadic action a -> [a], thus the result is a list of values ([a])
the comprehension proceeds to address each y in f x one-by-one
each y is sent to the output list
this is equivalent to first mapping f over each of the elements of the input list, resulting in a list of nested lists, that are then concatenated. Notice that fmap is map for lists, and you could use concatMap f xs as the definition of xs >>= f.
I'm trying to write some code in Haskell and there is problem that i can't solve
f 0 = []
f n = do
x <- [0..4]
y <- x:(f (n-1))
return y
The output is:
[0,0,0,1,2,3,4,1,0,1,2,3,4,2,0,1,2,3,4,3,0,1,2,3,4,4,0,1,2,3,4,1,0,0,1,2,3,4,1,0,1,2,3,4,2,0,1,2,3,4,3,0,1,2,3,4,4,0,1,2,3,4,2,0,0,1,2,3,4,1,0,1,2,3,4,2,0,1,2,3,4,3,0,1,2,3,4,4,0,1,2,3,4,3,0,0,1,2,3,4,1,0,1,2,3,4,2,0,1,2,3,4,3,0,1,2,3,4,4,0,1,2,3,4,4,0,0,1,2,3,4,1,0,1,2,3,4,2,0,1,2,3,4,3,0,1,2,3,4,4,0,1,2,3,4]
but I need it to be:
[[0,0,0],[0,0,1],[0,0,2],[0,0,3],[0,0,4],[0,1,0],[0,1,1]...
Any ideas?
Others have already answered, but you may wish to know there's already a function like yours in the standard library:
> import Control.Monad
> replicateM 3 [0..4]
[[0,0,0],[0,0,1],[0,0,2],[0,0,3],[0,0,4],[0,1,0],[0,1,1], ...
So you want the elements of your final list to be lists themselves ?
In the List monad, each <- remove one enclosing from the type, in other words :
(x :: a) <- (xs :: [a])
So it is clear that x :: Int in your code. And you wish for your function to return [[Int]] so what should be the type of x:(f (n-1)) ? You see that this expression shouldn't typecheck if f type was correct so there is your problem : you don't want to cons x to the result of f (n-1) but to each of the results of f (n-1) thus :
f n = do
x <- [0..4]
xs <- f (n-1)
return (x : xs)
If you try this you should see it doesn't work, this is because your f 0 should contain one possibility :
f 0 = return [] -- or [[]]
Let's desugar first:
f 0 = []
f n = [0 .. 4] >>= \x -> x : (f (n - 1)) >>= \y -> return y
Note
xs >>= f = concat (map f xs)
[0..4] >>= \x -> x : (f (n - 1)) will simply return [0..4] when n is 1. However, it need to be [[0], [1], [2], [3], [4]],
Thus, the following will do:
f 0 = [[]]
f n = [0 .. 4] >>= \x -> map (x:) (f (n - 1)) >>= \y -> return y
cross = do
x <- [0..4]
y <- [0..4]
z <- [0..4]
return [x,y,z]
I have a function for finite lists
> kart :: [a] -> [b] -> [(a,b)]
> kart xs ys = [(x,y) | x <- xs, y <- ys]
but how to implement it for infinite lists? I have heard something about Cantor and set theory.
I also found a function like
> genFromPair (e1, e2) = [x*e1 + y*e2 | x <- [0..], y <- [0..]]
But I'm not sure if it helps, because Hugs only gives out pairs without ever stopping.
Thanks for help.
Your first definition, kart xs ys = [(x,y) | x <- xs, y <- ys], is equivalent to
kart xs ys = xs >>= (\x ->
ys >>= (\y -> [(x,y)]))
where
(x:xs) >>= g = g x ++ (xs >>= g)
(x:xs) ++ ys = x : (xs ++ ys)
are sequential operations. Redefine them as alternating operations,
(x:xs) >>/ g = g x +/ (xs >>/ g)
(x:xs) +/ ys = x : (ys +/ xs)
[] +/ ys = ys
and your definition should be good to go for infinite lists as well:
kart_i xs ys = xs >>/ (\x ->
ys >>/ (\y -> [(x,y)]))
testing,
Prelude> take 20 $ kart_i [1..] [101..]
[(1,101),(2,101),(1,102),(3,101),(1,103),(2,102),(1,104),(4,101),(1,105),(2,103)
,(1,106),(3,102),(1,107),(2,104),(1,108),(5,101),(1,109),(2,105),(1,110),(3,103)]
courtesy of "The Reasoned Schemer". (see also conda, condi, conde, condu).
another way, more explicit, is to create separate sub-streams and combine them:
kart_i2 xs ys = foldr g [] [map (x,) ys | x <- xs]
where
g a b = head a : head b : g (tail a) (tail b)
this actually produces exactly the same results. But now we have more control over how we combine the sub-streams. We can be more diagonal:
kart_i3 xs ys = g [] [map (x,) ys | x <- xs]
where -- works both for finite
g [] [] = [] -- and infinite lists
g a b = concatMap (take 1) a
++ g (filter (not . null) (take 1 b ++ map (drop 1) a))
(drop 1 b)
so that now we get
Prelude> take 20 $ kart_i3 [1..] [101..]
[(1,101),(2,101),(1,102),(3,101),(2,102),(1,103),(4,101),(3,102),(2,103),(1,104)
,(5,101),(4,102),(3,103),(2,104),(1,105),(6,101),(5,102),(4,103),(3,104),(2,105)]
With some searching on SO I've also found an answer by Norman Ramsey with seemingly yet another way to generate the sequence, splitting these sub-streams into four areas - top-left tip, top row, left column, and recursively the rest. His merge there is the same as our +/ here.
Your second definition,
genFromPair (e1, e2) = [x*e1 + y*e2 | x <- [0..], y <- [0..]]
is equivalent to just
genFromPair (e1, e2) = [0*e1 + y*e2 | y <- [0..]]
Because the list [0..] is infinite there's no chance for any other value of x to come into play. This is the problem that the above definitions all try to avoid.
Prelude> let kart = (\xs ys -> [(x,y) | ls <- map (\x -> map (\y -> (x,y)) ys) xs, (x,y) <- ls])
Prelude> :t kart
kart :: [t] -> [t1] -> [(t, t1)]
Prelude> take 10 $ kart [0..] [1..]
[(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10)]
Prelude> take 10 $ kart [0..] [5..10]
[(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,5),(1,6),(1,7),(1,8)]
you can think of the sequel as
0: (0, 0)
/ \
1: (1,0) (0,1)
/ \ / \
2: (2,0) (1, 1) (0,2)
...
Each level can be expressed by level n: [(n,0), (n-1, 1), (n-2, 2), ..., (0, n)]
Doing this to n <- [0..]
We have
cartesianProducts = [(n-m, m) | n<-[0..], m<-[0..n]]
I want a function that takes two lists of any type and returns one (i.e. f:: [[a]] -> [[a]] -> [[a]]). Basically, too produce the 'concatenation' of the two input lists.
e.g.
> f [[1,2,3], [123]] [[4,5,6], [3,7]]
[[1,2,3,4,5,6], [1,2,3,3,7], [123,4,5,6], [123,3,7]]
I currently have got this far with it:
f _ [] = []
f [] _ = []
f (xs:xss) (ys:yss) = ((xs ++ ys) : [m | m <- f [xs] yss])
But this doesn't take into account xss and is wrong. Any suggestions?
It's a Cartesian product, so you can simply use one list comprehension to do everything.
Prelude> let xs = [[1,2,3], [123]]
Prelude> let ys = [[4,5,6], [3,7]]
Prelude> [x ++ y | x <- xs, y <- ys]
[[1,2,3,4,5,6],[1,2,3,3,7],[123,4,5,6],[123,3,7]]
import Control.Applicative
(++) <$> [[1,2,3], [123]] <*> [[4,5,6], [3,7]]
[[1,2,3,4,5,6],[1,2,3,3,7],[123,4,5,6],[123,3,7]]
f l1 l2 = [x ++ y | x <- l1, y <- l2]
In Alternative:
import Control.Applicative
f :: (Applicative f, Alternative g) => f (g a) -> f (g a) -> f (g a)
f = liftA2 (<|>)
f a b = map concat . sequence $ [a,b]
Scales up for combining any number of lists.
Given two lists, I can produce a list of all permutations the Cartesian Product of these two lists:
permute :: [a] -> [a] -> [[a]]
permute xs ys = [ [x, y] | x <- xs, y <- ys ]
Example> permute [1,2] [3,4] == [ [1,3], [1,4], [2,3], [2,4] ]
How do I extend permute so that instead of taking two lists, it takes a list (length n) of lists and returns a list of lists (length n)
permute :: [[a]] -> [[a]]
Example> permute [ [1,2], [3,4], [5,6] ]
== [ [1,3,5], [1,3,6], [1,4,5], [1,4,6] ] --etc
I couldn't find anything relevant on Hoogle.. the only function matching the signature was transpose, which doesn't produce the desired output.
Edit: I think the 2-list version of this is essentially the Cartesian Product, but I can't wrap my head around implementing the n-ary Cartesian Product. Any pointers?
Prelude> sequence [[1,2],[3,4],[5,6]]
[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],[2,4,5],[2,4,6]]
I found Eric Lippert's article on computing Cartesian product with LINQ quite helpful in improving my understanding of what was going on. Here's a more-or-less direct translation:
cartesianProduct :: [[a]] -> [[a]]
cartesianProduct sequences = foldr aggregator [[]] sequences
where aggregator sequence accumulator =
[ item:accseq |item <- sequence, accseq <- accumulator ]
Or with more "Haskell-y" terse, meaningless parameter names ;)
cartesianProduct = foldr f [[]]
where f l a = [ x:xs | x <- l, xs <- a ]
This winds up being quite similar to sclv posted after all.
Here is my way of implementing it simply, using only list comprehensions.
crossProduct :: [[a]] -> [[a]]
crossProduct (axis:[]) = [ [v] | v <- axis ]
crossProduct (axis:rest) = [ v:r | v <- axis, r <- crossProduct rest ]
As a supplement to jleedev's answer (couldn't format this in the comments):
A quick unchecked substitution of list functions for monadic ones:
sequence ms = foldr k (return []) ms
where
k m m' = do { x <- m; xs <- m'; return (x:xs) }
....
k m m' = m >>= \x -> m' >>= \xs -> [x:xs]
k m m' = flip concatMap m $ \x -> flip concatMap m' $ \xs -> [x:xs]
k m m' = concatMap (\x -> concatMap (\xs -> [x:xs]) m') m
....
sequence ms = foldr k ([[]]) ms
where
k m m' = concatMap (\x -> concatMap (\xs -> [x:xs]) m') m
If you want to have more control over the output, you can use a list as applicative functor, e.g.:
(\x y z -> [x,y,z]) <$> [1,2] <*> [4,5] <*> [6,7]
Let's say you want a list of tuples instead:
(\x y z -> (x,y,z)) <$> [1,2] <*> [4,5] <*> [6,7]
And it looks kind of cool, too...
You can do this in 2 ways:
Using list comprehension
cp :: [[a]] -> [[a]]
cp [] = [[]]
cp (xs:xss) = [ x:ys | x <- xs, ys <- cp xss ]
Using a fold
cp1 :: [[a]] -> [[a]]
cp1 xs = foldr f [[]] xs
where f xs xss = [x:ys | x <- xs, ys <- xss]