How to safely terminate a thread in Python - python-3.x

I have below code, where I am using OpenCV to start webcam video. Along with that I also have a thread running that pings www.google.com to check network connectivity.
import time
import cv2
import os
from threading import Thread
stopThread = False
def CheckNetwork():
global stopThread
while True:
time.sleep(60)
host = "www.google.com"
response = os.system("ping " + host)
if response == 0:
print("Internet host reachable")
else:
print("Internet host not reachable")
if stopThread:
break
def main():
global stopThread
Thread(target=CheckNetwork).start()
cam = cv2.VideoCapture(0)
while True:
ret_val, img = cam.read()
cv2.imshow('Camera', img)
key = cv2.waitKey(1)
if key == ord('q'):
stopThread = True
break
cv2.destroyAllWindows()
main()
This code is running fine. If I have to close the application by pressing q, OpenCV window closes but application keeps running for 60sec because of the thread and only after 60sec whole application terminates safely.
I wanted to know if this is a good way to close the threads. Is there any better way available which can immediately terminate threads in Python?

There's no native way of stopping a thread in Python. Instead of using a stop flag, you can also use ctypes that calls the Python API to raise an exception in the thread.
import ctypes
# Other imports...
class ThreadWithException(threading.Thread):
def __init__(self, name):
threading.Thread.__init__(self)
self.name = name
def run(self):
# code here...
def get_id(self):
# returns id of the respective thread
if hasattr(self, '_thread_id'):
return self._thread_id
for id, thread in threading._active.items():
if thread is self:
return id
def raise_exception(self):
thread_id = self.get_id()
res = ctypes.pythonapi.PyThreadState_SetAsyncExc(thread_id,
ctypes.py_object(SystemExit))
if res > 1:
ctypes.pythonapi.PyThreadState_SetAsyncExc(thread_id, 0)
print('Exception raise failure')

Related

Ctrl+c not stopping a Thread in Windows + python3.7

I'm trying this simple thread with a while loop inside. When I'm inside the while loop, Ctrl+C has no effect in stopping my program. Once I go do something else after the while loop, the script stops as intended. What can I do so my script can be gracefully killed both while being in the while loop and after? (Edit: This seems to be a problem exclusive to Windows, iOS and Ubuntu seem to do what I want)
import time, threading
class MainClass(threading.Thread):
def __init__(self):
super().__init__()
def run(self):
while True:
time.sleep(1)
print("Looping")
# Script entry point
if __name__ == '__main__':
a = MainClass()
a.daemon = True
a.start()
a.join()
This is a known issue, explained in Issue 35935.
A way to solve it is to revert to the default kernel behaviour of SIGINT using signal.signal(signal.SIGINT, signal.SIG_DFL), (solution pointed out by the issue OP). As to why this has to be the case is beyond the scope of my knowledge.
This works on Windows using Python 3.8+.
Implementation:
import time, threading
import signal
class MainClass(threading.Thread):
def __init__(self):
super().__init__()
def run(self):
while True:
time.sleep(1)
print("Looping")
# Script entry point
if __name__ == '__main__':
a = MainClass()
a.daemon=True
signal.signal(signal.SIGINT, signal.SIG_DFL)
a.start()
a.join()

Python PyQt5: based on condition, run a CPU intensive QThread [duplicate]

I am trying to figure out why this code crashes if I try to run the threads for a second time once they are completed.
The first time I click "Start 5 Threads" It runs just fine and finishes. But if I click it again. The entire program crashes and I get the QThread: Destroyed while thread is still running Error
This code was found on the web. I am trying to learn from it.
import time
import sys
from PyQt5.QtCore import QObject, QThread, pyqtSignal, pyqtSlot
from PyQt5.QtWidgets import QApplication, QPushButton, QTextEdit, QVBoxLayout, QWidget
def trap_exc_during_debug(*args):
# when app raises uncaught exception, print info
print(args)
# install exception hook: without this, uncaught exception would cause application to exit
sys.excepthook = trap_exc_during_debug
class Worker(QObject):
"""
Must derive from QObject in order to emit signals, connect slots to other signals, and operate in a QThread.
"""
sig_step = pyqtSignal(int, str) # worker id, step description: emitted every step through work() loop
sig_done = pyqtSignal(int) # worker id: emitted at end of work()
sig_msg = pyqtSignal(str) # message to be shown to user
def __init__(self, id: int):
super().__init__()
self.__id = id
self.__abort = False
#pyqtSlot()
def work(self):
"""
Pretend this worker method does work that takes a long time. During this time, the thread's
event loop is blocked, except if the application's processEvents() is called: this gives every
thread (incl. main) a chance to process events, which in this sample means processing signals
received from GUI (such as abort).
"""
thread_name = QThread.currentThread().objectName()
thread_id = int(QThread.currentThreadId()) # cast to int() is necessary
self.sig_msg.emit('Running worker #{} from thread "{}" (#{})'.format(self.__id, thread_name, thread_id))
for step in range(100):
time.sleep(0.1)
self.sig_step.emit(self.__id, 'step ' + str(step))
# check if we need to abort the loop; need to process events to receive signals;
app.processEvents() # this could cause change to self.__abort
if self.__abort:
# note that "step" value will not necessarily be same for every thread
self.sig_msg.emit('Worker #{} aborting work at step {}'.format(self.__id, step))
break
self.sig_done.emit(self.__id)
def abort(self):
self.sig_msg.emit('Worker #{} notified to abort'.format(self.__id))
self.__abort = True
class MyWidget(QWidget):
NUM_THREADS = 5
# sig_start = pyqtSignal() # needed only due to PyCharm debugger bug (!)
sig_abort_workers = pyqtSignal()
def __init__(self):
super().__init__()
self.setWindowTitle("Thread Example")
form_layout = QVBoxLayout()
self.setLayout(form_layout)
self.resize(400, 800)
self.button_start_threads = QPushButton()
self.button_start_threads.clicked.connect(self.start_threads)
self.button_start_threads.setText("Start {} threads".format(self.NUM_THREADS))
form_layout.addWidget(self.button_start_threads)
self.button_stop_threads = QPushButton()
self.button_stop_threads.clicked.connect(self.abort_workers)
self.button_stop_threads.setText("Stop threads")
self.button_stop_threads.setDisabled(True)
form_layout.addWidget(self.button_stop_threads)
self.log = QTextEdit()
form_layout.addWidget(self.log)
self.progress = QTextEdit()
form_layout.addWidget(self.progress)
QThread.currentThread().setObjectName('main') # threads can be named, useful for log output
self.__workers_done = None
self.__threads = None
def start_threads(self):
self.log.append('starting {} threads'.format(self.NUM_THREADS))
self.button_start_threads.setDisabled(True)
self.button_stop_threads.setEnabled(True)
self.__workers_done = 0
self.__threads = []
for idx in range(self.NUM_THREADS):
worker = Worker(idx)
thread = QThread()
thread.setObjectName('thread_' + str(idx))
self.__threads.append((thread, worker)) # need to store worker too otherwise will be gc'd
worker.moveToThread(thread)
# get progress messages from worker:
worker.sig_step.connect(self.on_worker_step)
worker.sig_done.connect(self.on_worker_done)
worker.sig_msg.connect(self.log.append)
# control worker:
self.sig_abort_workers.connect(worker.abort)
# get read to start worker:
# self.sig_start.connect(worker.work) # needed due to PyCharm debugger bug (!); comment out next line
thread.started.connect(worker.work)
thread.start() # this will emit 'started' and start thread's event loop
# self.sig_start.emit() # needed due to PyCharm debugger bug (!)
#pyqtSlot(int, str)
def on_worker_step(self, worker_id: int, data: str):
self.log.append('Worker #{}: {}'.format(worker_id, data))
self.progress.append('{}: {}'.format(worker_id, data))
#pyqtSlot(int)
def on_worker_done(self, worker_id):
self.log.append('worker #{} done'.format(worker_id))
self.progress.append('-- Worker {} DONE'.format(worker_id))
self.__workers_done += 1
if self.__workers_done == self.NUM_THREADS:
self.log.append('No more workers active')
self.button_start_threads.setEnabled(True)
self.button_stop_threads.setDisabled(True)
# self.__threads = None
#pyqtSlot()
def abort_workers(self):
self.sig_abort_workers.emit()
self.log.append('Asking each worker to abort')
for thread, worker in self.__threads: # note nice unpacking by Python, avoids indexing
thread.quit() # this will quit **as soon as thread event loop unblocks**
thread.wait() # <- so you need to wait for it to *actually* quit
# even though threads have exited, there may still be messages on the main thread's
# queue (messages that threads emitted before the abort):
self.log.append('All threads exited')
if __name__ == "__main__":
app = QApplication([])
form = MyWidget()
form.show()
sys.exit(app.exec_())
The problem is solved by passing him as a parent to self. You must change:
thread = QThread()
to:
thread = QThread(parent=self)

Ensure child processes get killed if Parent Process crashes in python.Solution must support all operating system

I have an application where a parent process polls a server to get download jobs and then spawns child processes to complete the job.This cycle continues until there are some jobs to be entertained by the parent process.I need to ensure that the child processes die in case the parent process crashes.I am using python as programming language.Plus let's say in case this parent process dies it is brought up by some other process. Below are some mechanisms -
1. As per multiprocessing module of python - "When a process exits, it attempts to terminate all of its daemonic child processes." So it attempts but does not guarantee.So its not reliable.
2. I can add entry in db with the mapping of child_process_id->jobId, which tells which child process is downloading which job.When the parent process comes up before polling it checks whether there is any entry of child_process_id->jobId. In case there is it kills the process with given child_process_id and sends the jobId in the next poll.
Can I have a clean way of killing the child processes when parent process crashes abruptly ?I need to have a solution compliant for windows, linux and mac. I was suggested by someone that File Locks can help me but i could not understand how file locks can help me achieve this.
#parent.py
import time
import subprocess
import file_lock_lib
import os
PARENT_LOCK_NAME = "ParentChildTask"
CHILD_LOCK_NAME = "ChildTask-%d"
def main():
#for running single parent process
fmutex, res = file_lock_lib.FileLock(PARENT_LOCK_NAME, True)
print("PARENT ID is =============" + str(os.getpid()))
if not res:
print("ParentProcess already running")
exit(1)
print("Spawing Child Processes")
r = subprocess.Popen(["python", "/Users/abi/PycharmProjects/osProgramming/parent_child/child.py"])
#aquire the lock for child process
c_lock, res = file_lock_lib.FileLock(CHILD_LOCK_NAME% r.pid)
import time
start_time = int(time.time())
while (int(time.time()) - start_time) < 180:
a = 1
1/0
#file_lock_lib.FileUnlock(fmutex)
if __name__ == '__main__':
main()
#file_lock.lib.py
import sys
import os
if sys.platform != 'win32':
'NOOB_IDS fcntl sysv_ipc sendmsg'
import fcntl
def FileLock(fname, nb=False):
if sys.platform == 'win32':
try:
sa = w32s.SECURITY_ATTRIBUTES()
sa.SetSecurityDescriptorDacl(True, None, False)
fmutex = win32event.CreateMutex(sa, False, fname)
except pywintypes.error as fault:
if fault.winerror == 5:
fmutex = win32event.OpenMutex(win32event.SYNCHRONIZE, False, fname)
else:
raise
if nb:
wtime = 0
else:
wtime = win32event.INFINITE
rc = win32event.WaitForSingleObject(fmutex, wtime)
if rc == win32event.WAIT_TIMEOUT or rc == win32event.WAIT_FAILED:
win32api.CloseHandle(fmutex)
return None, False
else:
if not fname.startswith('/'):
# Not an absolute path name, prefix in $HOME/.inSync
fname = os.path.join(os.getenv('HOME'), '.file_lock_lib', fname)
fdir = os.path.dirname(fname)
if not os.path.exists(fdir):
os.makedirs(fdir)
try:
fmutex = open(fname, "rb+")
except:
fmutex = open(fname, "wb+")
try:
flags = fcntl.LOCK_EX
if nb:
flags |= fcntl.LOCK_NB
fcntl.flock(fmutex.fileno(), flags)
except IOError:
return None, False
return fmutex, True
def FileUnlock(fmutex):
if sys.platform == 'win32':
win32event.ReleaseMutex(fmutex)
win32api.CloseHandle(fmutex)
else:
fcntl.flock(fmutex.fileno(), fcntl.LOCK_UN)
fmutex.close()
#child.py
import time
import subprocess
import file_lock_lib
import os
PARENT_LOCK_NAME = "ParentChildTask"
CHILD_LOCK_NAME = "ChildTask-%d"
def main():
print("CHILD PID =================" + str(os.getpid()))
#check if parent process is running
fmutex, res = file_lock_lib.FileLock(PARENT_LOCK_NAME, True)
if res:
file_lock_lib.FileUnlock(fmutex)
print("Parent process is not running")
exit(1)
print("Child Started")
#spwan a thread to do work
#wait on Parent
mtx, res = file_lock_lib.FileLock(CHILD_LOCK_NAME%os.getpid())
file_lock_lib.FileUnlock(mtx)
print("Child Exited as parent process was killed")
if __name__ == '__main__':
main()
I figured out a way to solve the issue. Consider the parent and child process from the code above.
Hope this solution works....

PyQt - Signaling worker in QThread [duplicate]

I am trying to figure out why this code crashes if I try to run the threads for a second time once they are completed.
The first time I click "Start 5 Threads" It runs just fine and finishes. But if I click it again. The entire program crashes and I get the QThread: Destroyed while thread is still running Error
This code was found on the web. I am trying to learn from it.
import time
import sys
from PyQt5.QtCore import QObject, QThread, pyqtSignal, pyqtSlot
from PyQt5.QtWidgets import QApplication, QPushButton, QTextEdit, QVBoxLayout, QWidget
def trap_exc_during_debug(*args):
# when app raises uncaught exception, print info
print(args)
# install exception hook: without this, uncaught exception would cause application to exit
sys.excepthook = trap_exc_during_debug
class Worker(QObject):
"""
Must derive from QObject in order to emit signals, connect slots to other signals, and operate in a QThread.
"""
sig_step = pyqtSignal(int, str) # worker id, step description: emitted every step through work() loop
sig_done = pyqtSignal(int) # worker id: emitted at end of work()
sig_msg = pyqtSignal(str) # message to be shown to user
def __init__(self, id: int):
super().__init__()
self.__id = id
self.__abort = False
#pyqtSlot()
def work(self):
"""
Pretend this worker method does work that takes a long time. During this time, the thread's
event loop is blocked, except if the application's processEvents() is called: this gives every
thread (incl. main) a chance to process events, which in this sample means processing signals
received from GUI (such as abort).
"""
thread_name = QThread.currentThread().objectName()
thread_id = int(QThread.currentThreadId()) # cast to int() is necessary
self.sig_msg.emit('Running worker #{} from thread "{}" (#{})'.format(self.__id, thread_name, thread_id))
for step in range(100):
time.sleep(0.1)
self.sig_step.emit(self.__id, 'step ' + str(step))
# check if we need to abort the loop; need to process events to receive signals;
app.processEvents() # this could cause change to self.__abort
if self.__abort:
# note that "step" value will not necessarily be same for every thread
self.sig_msg.emit('Worker #{} aborting work at step {}'.format(self.__id, step))
break
self.sig_done.emit(self.__id)
def abort(self):
self.sig_msg.emit('Worker #{} notified to abort'.format(self.__id))
self.__abort = True
class MyWidget(QWidget):
NUM_THREADS = 5
# sig_start = pyqtSignal() # needed only due to PyCharm debugger bug (!)
sig_abort_workers = pyqtSignal()
def __init__(self):
super().__init__()
self.setWindowTitle("Thread Example")
form_layout = QVBoxLayout()
self.setLayout(form_layout)
self.resize(400, 800)
self.button_start_threads = QPushButton()
self.button_start_threads.clicked.connect(self.start_threads)
self.button_start_threads.setText("Start {} threads".format(self.NUM_THREADS))
form_layout.addWidget(self.button_start_threads)
self.button_stop_threads = QPushButton()
self.button_stop_threads.clicked.connect(self.abort_workers)
self.button_stop_threads.setText("Stop threads")
self.button_stop_threads.setDisabled(True)
form_layout.addWidget(self.button_stop_threads)
self.log = QTextEdit()
form_layout.addWidget(self.log)
self.progress = QTextEdit()
form_layout.addWidget(self.progress)
QThread.currentThread().setObjectName('main') # threads can be named, useful for log output
self.__workers_done = None
self.__threads = None
def start_threads(self):
self.log.append('starting {} threads'.format(self.NUM_THREADS))
self.button_start_threads.setDisabled(True)
self.button_stop_threads.setEnabled(True)
self.__workers_done = 0
self.__threads = []
for idx in range(self.NUM_THREADS):
worker = Worker(idx)
thread = QThread()
thread.setObjectName('thread_' + str(idx))
self.__threads.append((thread, worker)) # need to store worker too otherwise will be gc'd
worker.moveToThread(thread)
# get progress messages from worker:
worker.sig_step.connect(self.on_worker_step)
worker.sig_done.connect(self.on_worker_done)
worker.sig_msg.connect(self.log.append)
# control worker:
self.sig_abort_workers.connect(worker.abort)
# get read to start worker:
# self.sig_start.connect(worker.work) # needed due to PyCharm debugger bug (!); comment out next line
thread.started.connect(worker.work)
thread.start() # this will emit 'started' and start thread's event loop
# self.sig_start.emit() # needed due to PyCharm debugger bug (!)
#pyqtSlot(int, str)
def on_worker_step(self, worker_id: int, data: str):
self.log.append('Worker #{}: {}'.format(worker_id, data))
self.progress.append('{}: {}'.format(worker_id, data))
#pyqtSlot(int)
def on_worker_done(self, worker_id):
self.log.append('worker #{} done'.format(worker_id))
self.progress.append('-- Worker {} DONE'.format(worker_id))
self.__workers_done += 1
if self.__workers_done == self.NUM_THREADS:
self.log.append('No more workers active')
self.button_start_threads.setEnabled(True)
self.button_stop_threads.setDisabled(True)
# self.__threads = None
#pyqtSlot()
def abort_workers(self):
self.sig_abort_workers.emit()
self.log.append('Asking each worker to abort')
for thread, worker in self.__threads: # note nice unpacking by Python, avoids indexing
thread.quit() # this will quit **as soon as thread event loop unblocks**
thread.wait() # <- so you need to wait for it to *actually* quit
# even though threads have exited, there may still be messages on the main thread's
# queue (messages that threads emitted before the abort):
self.log.append('All threads exited')
if __name__ == "__main__":
app = QApplication([])
form = MyWidget()
form.show()
sys.exit(app.exec_())
The problem is solved by passing him as a parent to self. You must change:
thread = QThread()
to:
thread = QThread(parent=self)

websockets, asyncio and PyQt5 together at last. Is Quamash necessary?

I've been working on a client that uses PyQt5 and the websockets module which is built around asyncio. I thought that something like the code below would work but I'm finding that the incoming data (from the server) is not being updated in the GUI until I click enter in the line edit box. Those incoming messages are intended to set the pulse for the updates to the GUI and will carry data to be used for updating. Is quamash a better way to approach this? btw, I will be using processes for some other aspects of this code so I don't consider it overkill (at this point).
This is Python 3.6, PyQt5.6(or higher) and whatever version of websockets that currently installs with pip. https://github.com/aaugustin/websockets
The client:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import asyncio
import websockets
import sys
import time
from multiprocessing import Process, Pipe, Queue
from PyQt5 import QtCore, QtGui, QtWidgets
class ComBox(QtWidgets.QDialog):
def __init__(self):
QtWidgets.QDialog.__init__(self)
self.verticalLayout = QtWidgets.QVBoxLayout(self)
self.groupBox = QtWidgets.QGroupBox(self)
self.groupBox.setTitle( "messages from beyond" )
self.gridLayout = QtWidgets.QGridLayout(self.groupBox)
self.label = QtWidgets.QLabel(self.groupBox)
self.gridLayout.addWidget(self.label, 0, 0, 1, 1)
self.verticalLayout.addWidget(self.groupBox)
self.lineEdit = QtWidgets.QLineEdit(self)
self.verticalLayout.addWidget(self.lineEdit)
self.lineEdit.editingFinished.connect(self.enterPress)
#QtCore.pyqtSlot()
def enterPress(self):
mytext = str(self.lineEdit.text())
self.inputqueue.put(mytext)
#QtCore.pyqtSlot(str)
def updategui(self, message):
self.label.setText(message)
class Websocky(QtCore.QThread):
updatemaingui = QtCore.pyqtSignal(str)
def __init__(self):
super(Websocky, self).__init__()
def run(self):
while True:
time.sleep(.1)
message = self.outputqueue.get()
try:
self.updatemaingui[str].emit(message)
except Exception as e1:
print("updatemaingui problem: {}".format(e1))
async def consumer_handler(websocket):
while True:
try:
message = await websocket.recv()
outputqueue.put(message)
except Exception as e1:
print(e1)
async def producer_handler(websocket):
while True:
message = inputqueue.get()
await websocket.send(message)
await asyncio.sleep(.1)
async def handler():
async with websockets.connect('ws://localhost:8765') as websocket:
consumer_task = asyncio.ensure_future(consumer_handler(websocket))
producer_task = asyncio.ensure_future(producer_handler(websocket))
done, pending = await asyncio.wait(
[consumer_task, producer_task],
return_when=asyncio.FIRST_COMPLETED, )
for task in pending:
task.cancel()
def start_websockets():
loop = asyncio.get_event_loop()
loop.run_until_complete(handler())
inputqueue = Queue()
outputqueue = Queue()
app = QtWidgets.QApplication(sys.argv)
comboxDialog = ComBox()
comboxDialog.inputqueue = inputqueue
comboxDialog.outputqueue = outputqueue
comboxDialog.show()
webster = Websocky()
webster.outputqueue = outputqueue
webster.updatemaingui[str].connect(comboxDialog.updategui)
webster.start()
p2 = Process(target=start_websockets)
p2.start()
sys.exit(app.exec_())
The server:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import asyncio
import time
import websockets
# here we'll store all active connections to use for sending periodic messages
connections = []
##asyncio.coroutine
async def connection_handler(connection, path):
connections.append(connection) # add connection to pool
while True:
msg = await connection.recv()
if msg is None: # connection lost
connections.remove(connection) # remove connection from pool, when client disconnects
break
else:
print('< {}'.format(msg))
##asyncio.coroutine
async def send_periodically():
while True:
await asyncio.sleep(2) # switch to other code and continue execution in 5 seconds
for connection in connections:
message = str(round(time.time()))
print('> Periodic event happened.')
await connection.send(message) # send message to each connected client
start_server = websockets.serve(connection_handler, 'localhost', 8765)
asyncio.get_event_loop().run_until_complete(start_server)
asyncio.ensure_future(send_periodically()) # before blocking call we schedule our coroutine for sending periodic messages
asyncio.get_event_loop().run_forever()
Shortly after posting this question I realized the problem. The line
message = inputqueue.get()
in the producer_handler function is blocking. This causes what should be an async function to hang everything in that process until it sees something in the queue. My workaround was to use the aioprocessing module which provides asyncio compatible queues. So, it looks more like this:
import aioprocessing
async def producer_handler(websocket):
while True:
message = await inputqueue.coro_get()
await websocket.send(message)
await asyncio.sleep(.1)
inputqueue = aioprocessing.AioQueue()
The aioprocessing module provides some nice options and documentation. And in this case is a rather simple solution for the issue. https://github.com/dano/aioprocessing
So, to answer my question: No, you don't have to use quamash for this kind of thing.

Resources