How to handle errors with TimeDelta and Integers in Python - python-3.x

I need to calculate the distance between two dates.
df3['dist_2_1'] = (df3['Date2'] - df3['Date1'])
When I save this into my SQLite DB the format is terrible, so I decided to use an integer format which is much better.
df3['dist_2_1'] = (df3['Date2'] - df3['Date1']).astype('timedelta64[D]').astype(int)
So far so good, but in a similar case, I've NULL values which cause an error when I try to do the diference between dates.
df3['dist_B_3'] = df3['Break_date'] - df3['Date3']
The Break_date can be null, so I want that in this case the final result in dist_B_3 is 0, but now is an error that breaks everything. I tested this so far, but doesn't work...
try:
if df3['Break_date'] == 'NaT':
df3['dist_B_3'] = 0
else:
df3['dist_B_3'] = df3['Break_date'] - df3['Date3']
#().astype('timedelta64[D]').astype(int)
except Exception:
print("error in the dist_B_3")
My df3['Break_date'] df is this one, so the NaT are the ones creating the error.
0 2022-07-13
1 2022-07-12
2 2022-07-14
3 2022-07-14
4 NaT
5 NaT
Any idea on how to handle this?

Related

running for loop until arbitrary index (python 3.x)

So I have these strings that I split by spaces (' ') and I just rolled them into a single list I called 'keyLabelRun'
so it looks like this:
keyLabelRun[0-12]:
0 OS=Dengue
1 virus
2 3
3 PE=4
4 SV=1
5 Split=0
6
7 OS=Bacillus
8 subtilis
9 XF-1
10 GN=opuBA
11 PE=4
12 SV=1
I only want the elements that include and are after "OS=", anything else, whether it be "SV=" or "PE=" etc. I want to skip over those elements until I get to the next "OS="
The number of elements to the next "OS=" is arbitrary so that's where I'm having the problem.
This is what I'm currently trying:
OSarr = []
for i in range(len(keyLabelrun)):
if keyLabelrun[i].count('OS='):
OSarr.append(keyLabelrun[i])
if keyLabelrun[i+1].count('=') != 1:
continue
But the elements where "OS=" is not included is what is tripping me up I think.
Also at the end I'm going to join them all back together in their own elements but I feel like I will be able to handle that after this.
In my attempt, I am trying to append all elements I'm looking for in order to an new list 'OSarr'
If anyone can lend a hand, it would be much appreciated.
Thank you.
These list of strings came from a dataset that is a text file in the form:
>tr|W0FSK4|W0FSK4_9FLAV Genome polyprotein (Fragment) OS=Dengue virus 3 PE=4 SV=1 Split=0
MNNQRKKTGKPSINMLKRVRNRVSTGSQLAKRFSKGLLNGQGPMKLVMAFIAFLRFLAIPPTAGVLARWGTFKKSGAIKVLKGFKKEISNMLSIINKRKKTSLCLMMILPAALAFHLTSRDGEPRMIVGKNERGKSLLFKTASGINMCTLIAMDLGEMCDDTVTYKCPHITEVEPEDIDCWCNLTSTWVTYGTCNQAGEHRRDKRSVALAPHVGMGLDTRTQTWMSAEGAWRQVEKVETWALRHPGFTILALFLAHYIGTSLTQKVVIFILLMLVTPSMTMRCVGVGNRDFVEGLSGATWVDVVLEHGGCVTTMAKNKPTLDIELQKTEATQLATLRKLCIEGKITNITTDSRCPTQGEATLPEEQDQNYVCKHTYVDRGWGNGCGLFGKGSLVTCAKFQCLEPIEGKVVQYENLKYTVIITVHTGDQHQVGNETQGVTAEITPQASTTEAILPEYGTLGLECSPRTGLDFNEMILLTMKNKAWMVHRQWFFDLPLPWTSGATTETPTWNRKELLVTFKNAHAKKQEVVVLGSQEGAMHTALTGATEIQNSGGTSIFAGHLKCRLKMDKLELKGMSYAMCTNTFVLKKEVSETQHGTILIKVEYKGEDVPCKIPFSTEDGQGKAHNGRLITANPVVTKKEEPVNIEAEPPFGESNIVIGIGDNALKINWYKKGSSIGKMFEATARGARRMAILGDTAWDFGSVGGVLNSLGKMVHQIFGSAYTALFSGVSWVMKIGIGVLLTWIGLNSKNTSMSFSCIAIGIITLYLGAVVQADMGCVINWKGKELKCGSGIFVTNEVHTWTEQYKFQADSPKRLATAIAGAWENGVCGIRSTTRMENLLWKQIANELNYILWENNIKLTVVVGDIIGVLEQGKRTLTPQPMELKYSWKTWGKAKIVTAETQNSSFIIDGPNTPECPSVSRAWNVWEVEDYGFGVFTTNIWLKLREVYTQLCDHRLMSAAVKDERAVHADMGYWIESQKNGSWKLEKASLIEVKTCTWPKSHTLWSNGVLESDMIIPKSLAGPISQHNHRPGYHTQTAGPWHLGKLELDFNYCEGTTVVITENCGTRGPSLRTTTVSGKLIHEWCCRSCTLPPLRYMGEDGCWYGMEIRPISEKEENMVKSLVSAGSGKVDNFTMGVLCLAILFEEVMRGKFGKKHMIAGVFFTFVLLLSGQITWRDMAHTLIMIGSNASDRMGMGVTYLALIATFKIQPFLALGFFLRKLTSRENLLLGVGLAMATTLQLPEDIEQMANGIALGLMALKLITQFETYQLWTALISLTCSNTIFTLTVAWRTATLILAGVSLLPVCQSSSMRKTDWLPMAVAAMGVPPLPLFIFGLKDTLKRRSWPLNEGVMAVGLVSILASSLLRNDVPMAGPLVAGGLLIACYVITGTSADLTVEKAADITWEEEAEQTGVSHNLMITVDDDGTMRIKDDETENILTVLLKTALLIVSGIFPYSIPATLLVWHTWQKQTQRSGVLWDVPSPPETQKAELEEGVYRIKQQGIFGKTQVGVGVQKEGVFHTMWHVTRGAVLTYNGKRLEPNWASVKKDLISYGGGWRLSAQWQKGEEVQVIAVEPGKNPKNFQTMPGTFQTTTGEIGAIALDFKPGTSGSPIINREGKVVGLYGNGVVTKNGGYVSGIAQTNAEPDGPTPELEEEMFKKRNLTIMDLHPGSGKTRKYLPAIVREAIKRRLRTLILAPTRVVAAEMEEALKGLPIRYQTTATKSEHTGREIVDLMCHATFTMRLLSPVRVPNYNLIIMDEAHFTDPASIAARGYISTRVGMGEAAAIFMTATPPGTADAFPQSNAPIQDEERDIPERSWNSGNEWITDFAGKTVWFVPSIKAGNDIANCLRKNGKKVIQLSRKTFDTEYQKTKLNDWDFVV
>tr|M4KW32|M4KW32_BACIU Choline ABC transporter (ATP-binding protein) OS=Bacillus subtilis XF-1 GN=opuBA PE=4 SV=1 Split=0
MLTLENVSKTYKGGKKAVNNVNLKIAKGEFICFIGPSGCGKTTTMKMINRLIEPSAGKIFIDGENIMDQDPVELRRKIGYVIQQIGLFPHMTIQQNISLVPKLLKWPEQQRKERARELLKLVDMGPEYVDRYPHELSGGQQQRIGVLRALAAEPPLILMDEPFGALDPITRDSLQEEFKKLQKTLHKTIVFVTHDMDEAIKLADRIVILKAGEIVQVGTPDDILRNPADEFVEEFIGKERLIQSSSPDVERVDQIMNTQPVTITADKTLSEAIQLMRQERVDSLLVVDDEHVLQGYVDVEIIDQCRKKANLIGEVLHEDIYTVLGGTLLRDTVRKILKRGVKYVPVVDEDRRLIGIVTRASLVDIVYDSLWGEEKQLAALS
>sp|Q8AWH3|SX17A_XENTR Transcription factor Sox-17-alpha OS=Xenopus tropicalis GN=sox17a PE=2 SV=1 Split=0
MSSPDGGYASDDQNQGKCSVPIMMTGLGQCQWAEPMNSLGEGKLKSDAGSANSRGKAEARIRRPMNAFMVWAKDERKRLAQQNPDLHNAELSKMLGKSWKALTLAEKRPFVEEAERLRVQHMQDHPNYKYRPRRRKQVKRMKRADTGFMHMAEPPESAVLGTDGRMCLESFSLGYHEQTYPHSQLPQGSHYREPQAMAPHYDGYSLPTPESSPLDLAEADPVFFTSPPQDECQMMPYSYNASYTHQQNSGASMLVRQMPQAEQMGQGSPVQGMMGCQSSPQMYYGQMYLPGSARHHQLPQAGQNSPPPEAQQMGRADHIQQVDMLAEVDRTEFEQYLSYVAKSDLGMHYHGQESVVPTADNGPISSVLSDASTAVYYCNYPSA
I got it! :D
OSarr = []
G = 0
for i in range(len(keyLabelrun)):
OSarr.append(keyLabelrun[G])
G += 1
if keyLabelrun[G].count('='):
while keyLabelrun[G].count('OS=') != 1:
G+=1
Maybe next time everyone, thank you!
Due to the syntax, you have to keep track of which part (OS, PE, etc) you're currently parsing. Here's a function to extract the species name from the FASTA header:
def extract_species(description):
species_parts = []
is_os = False
for word in description.split():
if word[:3] == 'OS=':
is_os = True
species_parts.append(word[3:])
elif '=' in word:
is_os = False
elif is_os:
species_parts.append(word)
return ' '.join(species_parts)
You can call it when processing your input file, e.g.:
from Bio import SeqIO
for record in SeqIO.parse('input.fa', 'fasta'):
species = extract_species(record.description)

pandas groupby trying to optimse several steps

I've been trying to optimise a bokeh server to calculate live stats by selected country on Covid19.
I found myself repeating a groupby function to calculate new columns and was wondering, having selected the groupby, if I could then apply it in a similar way to .agg() on multiple columns ?
For example:
dfall = pd.DataFrame(db("SELECT * FROM C19daily"))
dfall.set_index(['geoId', 'date'], drop=False, inplace=True)
dfall = dfall.sort_index(ascending=True)
dfall.head()
id date geoId cases deaths auid
geoId date
AD 2020-03-03 70119 2020-03-03 AD 1 0 AD03/03/2020
2020-03-14 70118 2020-03-14 AD 1 0 AD14/03/2020
2020-03-16 70117 2020-03-16 AD 3 0 AD16/03/2020
2020-03-17 70116 2020-03-17 AD 9 0 AD17/03/2020
2020-03-18 70115 2020-03-18 AD 0 0 AD18/03/2020
I need to create new columns based on 'cases' and 'deaths' and applying various functions like cumsum(). Currently I do this the long way
dfall['ccases'] = dfall.groupby(level=0)['cases'].cumsum()
dfall['dpc_cases'] = dfall.groupby(level=0)['cases'].pct_change(fill_method='pad', periods=7)
.....
dfall['cdeaths'] = dfall.groupby(level=0)['deaths'].cumsum()
dfall['dpc_deaths'] = dfall.groupby(level=0)['deaths'].pct_change(fill_method='pad', periods=7)
I tried to optimise the groupby call like this:-
with dfall.groupby(level=0) as gr:
gr = g['cases'].cumsum()...
But the error suggest the class doesn't support this
AttributeError: __enter__
I thought I could use .agg({}) and supply dictionary
g = dfall.groupby(level=0).agg({'cc' : 'cumsum', 'cd' : 'cumsum'})
but that produces another error
pandas.core.base.SpecificationError: nested renamer is not supported
I have plenty of other bits to optimise, I thought this python part would be the easiest and save a few ms!
Could anyone nudge me in the right direction?
To avoid repeating dfall.groupby(level=0) you can just save it in a variable:
gb = dfall.groupby(level=0)
gb_cases = gb['cases']
dfall['ccases'] = gb_cases.cumsum()
dfall['dpc_cases'] = gb_cases.pct_change(fill_method='pad', periods=7)
...
And to run multiple aggregations using a single expression, I think you can use named aggregation. But I have no clue whether it will be more performant or not. Either way, it's better to profile the code and improve the actual bottlenecks.

read_html resulting in first row as column header name despite header = None

url = "http://www.espn.com/nba/standings"
dfs = pd.read_html(url, header = None)
dfs[1]
resulting in:
1* --MILMilwaukee Bucks
0 2y --TORToronto Raptors
1 3x --PHIPhiladelphia 76ers
2 4x --BOSBoston Celtics
3 5x --INDIndiana Pacers
0 2y --TORToronto Raptors
1* --MILMilwaukee Bucks shouldn't be a column name
I feel like I am doing something wrong (haven't used Pandas in a while), but from what I have read header = None should work.
I have tried doing it but in my case also header = None didn't work(I am searching for the reason why it didn't work) well instead of it you can use header = 0 it works well.
data = pd.read_html("test.html",header = 0)
print(data)
** Output::**
[ Programming Language Creator Year
0 C Dennis Ritchie 1972
1 Python Guido Van Rossum 1989
2 Ruby Yukihiro Matsumoto 1995]
This will work for you. ;)

pd.to_datetime to solve '2010/1/1' rather than '2010/01/01'

I have a dataframe which contain a column 'trade_dt' like this
2009/12/1
2009/12/2
2009/12/3
2009/12/4
I got this problem
benchmark['trade_dt'] = pd.to_datetime(benchmark['trade_dt'], format='%Y-&m-%d')
ValueError: time data '2009/12/1' does not match format '%Y-&m-%d' (match)
how to solve it? Thanks~
Need change format for match - replace & and - to % and /:
benchmark['trade_dt'] = pd.to_datetime(benchmark['trade_dt'], format='%Y/%m/%d')
Also working with sample data removing format (but not sure with real data):
benchmark['trade_dt'] = pd.to_datetime(benchmark['trade_dt'])
print (benchmark)
trade_dt
0 2009-12-01
1 2009-12-02
2 2009-12-03
3 2009-12-04

python - cannot make corr work

I'm struggling with getting a simple correlation done. I've tried all that was suggested under similar questions.
Here are the relevant parts of the code, the various attempts I've made and their results.
import numpy as np
import pandas as pd
try01 = data[['ESA Index_close_px', 'CCMP Index_close_px' ]].corr(method='pearson')
print (try01)
Out:
Empty DataFrame
Columns: []
Index: []
try04 = data['ESA Index_close_px'][5:50].corr(data['CCMP Index_close_px'][5:50])
print (try04)
Out:
**AttributeError: 'float' object has no attribute 'sqrt'**
using numpy
try05 = np.corrcoef(data['ESA Index_close_px'],data['CCMP Index_close_px'])
print (try05)
Out:
AttributeError: 'float' object has no attribute 'sqrt'
converting the columns to lists
ESA_Index_close_px_list = list()
start_value = 1
end_value = len (data['ESA Index_close_px']) +1
for items in data['ESA Index_close_px']:
ESA_Index_close_px_list.append(items)
start_value = start_value+1
if start_value == end_value:
break
else:
continue
CCMP_Index_close_px_list = list()
start_value = 1
end_value = len (data['CCMP Index_close_px']) +1
for items in data['CCMP Index_close_px']:
CCMP_Index_close_px_list.append(items)
start_value = start_value+1
if start_value == end_value:
break
else:
continue
try06 = np.corrcoef(['ESA_Index_close_px_list','CCMP_Index_close_px_list'])
print (try06)
Out:
****TypeError: cannot perform reduce with flexible type****
Also tried .astype but not made any difference.
data['ESA Index_close_px'].astype(float)
data['CCMP Index_close_px'].astype(float)
Using Python 3.5, pandas 0.18.1 and numpy 1.11.1
Would really appreciate any suggestion.
**edit1:*
Data is coming from an excel spreadsheet
data = pd.read_excel('C:\\Users\\Ako\\Desktop\\ako_files\\for_corr_‌​tool.xlsx') prior to the correlation attempts, there are only column renames and
data = data.drop(data.index[0])
to get rid of a line
regarding the types:
print (type (data['ESA Index_close_px']))
print (type (data['ESA Index_close_px'][1]))
Out:
**edit2*
parts of the data:
print (data['ESA Index_close_px'][1:10])
print (data['CCMP Index_close_px'][1:10])
Out:
2 2137
3 2138
4 2132
5 2123
6 2127
7 2126.25
8 2131.5
9 2134.5
10 2159
Name: ESA Index_close_px, dtype: object
2 5241.83
3 5246.41
4 5243.84
5 5199.82
6 5214.16
7 5213.33
8 5239.02
9 5246.79
10 5328.67
Name: CCMP Index_close_px, dtype: object
Well, I've encountered the same problem today.
try use .astype('float64') to help make the type correct.
data['ESA Index_close_px'][5:50].astype('float64').corr(data['CCMP Index_close_px'][5:50].astype('float64'))
This works well for me. Hope it can help you as well.
You can try as following:
Top15['Citable docs per capita']=(Top15['Citable docs per capita']*100000)
Top15['Citable docs per capita'].astype('int').corr(Top15['Energy Supply per Capita'].astype('int'))
It worked for me.

Resources