Allow pattern destructuring but disallow construction - rust

Suppose I have the following src/lib.rs
pub enum Toppings {
Almond,
Caramel,
Cookie,
Marshmallow,
ChocolateSprinkles,
}
pub enum Icecream {
Chocolate(Toppings),
Mint(Toppings),
Vanilla(Toppings),
}
I want to allow pattern destructure s.t. people can use the library like any other enum with associated data:
use Icecream::*;
use Toppings::*;
fn order_how_many(icecream: Icecream) -> usize {
match icecream {
Chocolate(Marshmallow) => 42,
Vanilla(Cookie) => 69,
_ => 42069,
}
}
But at the same time I want to forbid creation of certain combinations of enum and its associated data, e.g. maybe the local ice cream store thinks double chocolate is too much and would never sell Icecream::Chocolate(Toppings::ChocolateSprinkles), so we should outright forbid any possibility this combination is constructed. I find this hard to implement in Rust, since I need pub enum to allow pattern destruction, but making the enum public means all of its variants are pub.
I tried private token similar to which sometimes could be found in sealed trait pattern, using private modules and prevents any accidental pub use via #[forbid(missing_docs)], s.t. only crate implementation can decide what Icecream/Toppings combination are possible, but this makes pattern matching ugly (require _ or .. in every pattern destruction).
mod icecream {
// Intentionally NOT use /// comment for this mod
// to prevent accidental `pub use`
#[forbid(missing_docs)]
mod hide {
pub struct Hide;
}
pub enum Toppings {
Almond,
Caramel,
Cookie,
Marshmallow,
ChocolateSprinkles,
}
pub enum Icecream {
Chocolate(Toppings, hide::Hide),
Mint(Toppings, hide::Hide),
Vanilla(Toppings, hide::Hide),
}
pub use Icecream::*;
pub use Toppings::*;
}
pub use icecream::*;
fn order_how_many(icecream: Icecream) -> usize { // OK
match icecream {
Chocolate(Marshmallow, _) => 42,
Vanilla(Cookie, ..) => 69,
_ => 42069,
}
}
fn str_to_icecream(base: &str, topping: &str) -> Option<Icecream> { // Compile fail as intended
if base.to_lowercase() == "chocollate" && topping.to_lowercase() == "chocolatesprinkles" {
Some(Chocolate(ChocolateSprinkles, icecream::hide::Hide))
} else {
None
}
}
Before posting the question SO suggested me this, but it also doesn't seem to fix the problem of enum here, since enum unlike struct cannot have different visibility between the type itself and its associated members, and that this would make having different shape of associated data more cumbersome to implement, e.g. if the length of tuples are different I'd probably have to implement a trait and return trait objects if I were to use this method.
Is there a more elegant/natural/rustacean way to do this? Or one should outright try avoid such code at the beginning, maybe since it's deemed as a bad practice?

You can't allow pattern-matching on enums without also allowing them to be constructed.
However, struct fields can be private, which lets you do things like this:
pub enum Toppings {
Almond,
Caramel,
Cookie,
Marshmallow,
ChocolateSprinkles,
}
pub enum Flavour {
Chocolate,
Mint,
Vanilla,
}
pub struct Icecream {
pub flavour: Flavour,
pub toppings: Toppings,
_secret: (), // non-pub, prevents construction from outside the module
}
You can no longer construct Icecream except from functions in the same module; these are the only things allowed to access the _secret field. Code outside of the module may still destructure the values, but must use .. to avoid naming the _secret field.
You'd rewrite your other functions like this:
// this can be in any module
fn order_how_many(icecream: Icecream) -> usize { // OK
match icecream {
Icecream { flavour: Chocolate, .. } => 42,
Icecream { flavour: Vanilla, toppings: Cookie, .. } => 69,
_ => 42069,
}
}
// this must be in the same module as the `Icecream` struct
fn str_to_icecream(base: &str, topping: &str) -> Option<Icecream> {
if base.to_lowercase() == "chocolate" && topping.to_lowercase() == "chocolatesprinkles" {
Some(
Icecream {
flavour: Chocolate,
toppings: ChocolateSprinkles,
_secret: ()
}
)
} else {
None
}
}

Related

Why does rustc allow me to leak a private type?

I have made a minimal example. In lib.rs:
mod sealed {
pub enum Choice {
A,
B,
}
}
pub fn print_choice(choice: sealed::Choice) {
match choice {
sealed::Choice::A => println!("Choice A"),
sealed::Choice::B => println!("Choice B"),
}
}
I think: The enum Choice is public. However, it's in a private mod, and cannot be reached from outside of the crate. Therefore the function print_choice is not callable at all.
What is wrong with my thinking?
What is wrong with my thinking?
You could have something like
pub use sealed::Choice;
at the toplevel. That is a common way to split up the implementation while providing a simple single-module interface to external users.
Or even just an other function returning an instance of Choice. Since it's pub, it's not considered a private type.
If you change pub enum to pub(crate) enum (meaning you state that the enum can not be made visible outside the crate) then the compilation will fail.
An important thing to understand is that Choice is not private. It is inside a private module, and thus unnamable, but it is public.
The only thing the module's privacy affects is that you cannot access the enum via this path. You can do any other thing with it, e.g. accessing it via other path it is reexported into:
mod sealed {
pub enum Choice {
A,
B,
}
}
pub use sealed::Choice;
// In other module
crate::Choice::A;
Or manipulate it with generics and traits, for example:
mod sealed {
pub enum Choice {
A,
B,
}
impl Default for Choice {
fn default() -> Self { Self::A }
}
}
pub fn print_choice(choice: sealed::Choice) { ... }
// In other module
crate::print_choice(Default::default());
mod sealed {
#[derive(Debug)]
pub enum Choice {
A,
B,
}
}
pub fn print_choice(choice: sealed::Choice) { crate::print(choice) }
// In other module
pub fn print<T: Debug>(v: T) { ... }
This private type seems to leak, but you don't have full control over it.
You cannot build such a private Choice, but another public function can provide you with it.
mod outer {
mod sealed {
pub enum Choice {
A,
B,
}
}
pub fn print_choice(choice: sealed::Choice) {
match choice {
sealed::Choice::A => println!("Choice A"),
sealed::Choice::B => println!("Choice B"),
}
}
pub fn make_choice(n: u32) -> sealed::Choice {
if n % 2 == 0 {
sealed::Choice::A
} else {
sealed::Choice::B
}
}
}
fn main() {
// let ch = outer::sealed::Choice::A; // error: module `sealed` is private
let ch = outer::make_choice(2);
outer::print_choice(ch);
}

Is there a macro that automatically creates a dictionary from an enum?

An enum is clearly a kind of key/value pair structure. Consequently, it would be nice to automatically create a dictionary from one wherein the enum variants become the possible keys and their payload the associated values. Keys without a payload would use the unit value. Here is a possible usage example:
enum PaperType {
PageSize(f32, f32),
Color(String),
Weight(f32),
IsGlossy,
}
let mut dict = make_enum_dictionary!(
PaperType,
allow_duplicates = true,
);
dict.insert(dict.PageSize, (8.5, 11.0));
dict.insert(dict.IsGlossy, ());
dict.insert_def(dict.IsGlossy);
dict.remove_all(dict.PageSize);
Significantly, since an enum is merely a list of values that may optionally carry a payload, auto-magically constructing a dictionary from it presents some semantic issues.
How does a strongly typed Dictionary<K, V> maintain the discriminant/value_type dependency inherent with enums where each discriminant has a specific payload type?
enum Ta {
K1(V1),
K2(V2),
...,
Kn(Vn),
}
How do you conveniently refer to an enum discriminant in code without its payload (Ta.K1?) and what type is it (Ta::Discriminant?) ?
Is the value to be set and get the entire enum value or just the payload?
get(&self, key: Ta::Discriminant) -> Option<Ta>
set(&mut self, value: Ta)
If it were possible to augment an existing enum auto-magically with another enum of of its variants then a reasonably efficient solution seems plausible in the following pseudo code:
type D = add_discriminant_keys!( T );
impl<D> for Vec<D> {
fn get(&self, key: D::Discriminant) -> Option<D> { todo!() }
fn set(&mut self, value: D) { todo!() }
}
I am not aware whether the macro, add_discriminant_keys!, or the construct, D::Discriminant, is even feasible. Unfortunately, I am still splashing in the shallow end of the Rust pool, despite this suggestion. However, the boldness of its macro language suggests many things are possible to those who believe.
Handling of duplicates is an implementation detail.
Enum discriminants are typically functions and therefore have a fixed pointer value (as far as I know). If such values could become constants of an associated type within the enum (like a trait) with attributes similar to what has been realized by strum::EnumDiscriminants things would look good. As it is, EnumDiscriminants seems like a sufficient interim solution.
A generic implementation over HashMap using strum_macros crate is provided based on in the rust playground; however, it is not functional there due to the inability of rust playground to load the strum crate from there. A macro derived solution would be nice.
First, like already said here, the right way to go is a struct with optional values.
However, for completeness sake, I'll show here how you can do that with a proc macro.
When you want to design a macro, especially a complicated one, the first thing to do is to plan what the emitted code will be. So, let's try to write the macro's output for the following reduced enum:
enum PaperType {
PageSize(f32, f32),
IsGlossy,
}
I will already warn you that our macro will not support brace-style enum variants, nor combining enums (your add_discriminant_keys!()). Both are possible to support, but both will complicate this already-complicated answer more. I'll refer to them shortly at the end.
First, let's design the map. It will be in a support crate. Let's call this crate denum (a name will be necessary later, when we'll refer to it from our macro):
pub struct Map<E> {
map: std::collections::HashMap<E, E>, // You can use any map implementation you want.
}
We want to store the discriminant as a key, and the enum as the value. So, we need a way to refer to the free discriminant. So, let's create a trait Enum:
pub trait Enum {
type DiscriminantsEnum: Eq + Hash; // The constraints are those of `HashMap`.
}
Now our map will look like that:
pub struct Map<E: Enum> {
map: std::collections::HashMap<E::DiscriminantsEnum, E>,
}
Our macro will generate the implementation of Enum. Hand-written, it'll be the following (note that in the macro, I wrap it in const _: () = { ... }. This is a technique used to prevent names polluting the global namespaces):
#[derive(PartialEq, Eq, Hash)]
pub enum PaperTypeDiscriminantsEnum {
PageSize,
IsGlossy,
}
impl Enum for PaperType {
type DiscriminantsEnum = PaperTypeDiscriminantsEnum;
}
Next. insert() operation:
impl<E: Enum> Map<E> {
pub fn insert(discriminant: E::DiscriminantsEnum, value: /* What's here? */) {}
}
There is no way in current Rust to refer to an enum discriminant as a distinct type. But there is a way to refer to struct as a distinct type.
We can think about the following:
pub struct PageSize;
But this pollutes the global namespace. Of course, we can call it something like PaperTypePageSize, but I much prefer something like PaperTypeDiscriminants::PageSize.
Modules to the rescue!
#[allow(non_snake_case)]
pub mod PaperTypeDiscriminants {
#[derive(Clone, Copy)]
pub struct PageSize;
#[derive(Clone, Copy)]
pub struct IsGlossy;
}
Now we need a way in insert() to validate the the provided discriminant indeed matches the wanted enum, and to refer to its value. A new trait!
pub trait EnumDiscriminant: Copy {
type Enum: Enum;
type Value;
fn to_discriminants_enum(self) -> <Self::Enum as Enum>::DiscriminantsEnum;
fn to_enum(self, value: Self::Value) -> Self::Enum;
}
And here's how our macro will implements it:
impl EnumDiscriminant for PaperTypeDiscriminants::PageSize {
type Enum = PaperType;
type Value = (f32, f32);
fn to_discriminants_enum(self) -> PaperTypeDiscriminantsEnum { PaperTypeDiscriminantsEnum::PageSize }
fn to_enum(self, (v0, v1): Self::Value) -> Self::Enum { Self::Enum::PageSize(v0, v1) }
}
impl EnumDiscriminant for PaperTypeDiscriminants::IsGlossy {
type Enum = PaperType;
type Value = ();
fn to_discriminants_enum(self) -> PaperTypeDiscriminantsEnum { PaperTypeDiscriminantsEnum::IsGlossy }
fn to_enum(self, (): Self::Value) -> Self::Enum { Self::Enum::IsGlossy }
}
And now insert():
pub fn insert<D>(&mut self, discriminant: D, value: D::Value)
where
D: EnumDiscriminant<Enum = E>,
{
self.map.insert(
discriminant.to_discriminants_enum(),
discriminant.to_enum(value),
);
}
And trivially insert_def():
pub fn insert_def<D>(&mut self, discriminant: D)
where
D: EnumDiscriminant<Enum = E, Value = ()>,
{
self.insert(discriminant, ());
}
And get() (note: seprately getting the value is possible when removing, by adding a method to the trait EnumDiscriminant with the signature fn enum_to_value(enum_: Self::Enum) -> Self::Value. It can be unsafe fn and use unreachable_unchecked() for better performance. But with get() and get_mut(), that returns reference, it's harder because you can't get a reference to the discriminant value. Here's a playground that does that nonetheless, but requires nightly):
pub fn get_entry<D>(&self, discriminant: D) -> Option<&E>
where
D: EnumDiscriminant<Enum = E>,
{
self.map.get(&discriminant.to_discriminants_enum())
}
get_mut() is very similar.
Note that my code doesn't handle duplicates but instead overwrites them, as it uses HashMap. However, you can easily create your own map that handles duplicates in another way.
Now that we have a clear picture in mind what the macro should generate, let's write it!
I decided to write it as a derive macro. You can use an attribute macro too, and even a function-like macro, but you must call it at the declaration site of your enum - because macros cannot inspect code other than the code the're applied to.
The enum will look like:
#[derive(denum::Enum)]
enum PaperType {
PageSize(f32, f32),
Color(String),
Weight(f32),
IsGlossy,
}
Usually, when my macro needs helper code, I put this code in crate and the macro in crate_macros, and reexports the macro from crate. So, the code in denum (besides the aforementioned Enum, EnumDiscriminant and Map):
pub use denum_macros::Enum;
denum_macros/src/lib.rs:
use proc_macro::TokenStream;
use quote::{format_ident, quote};
#[proc_macro_derive(Enum)]
pub fn derive_enum(item: TokenStream) -> TokenStream {
let item = syn::parse_macro_input!(item as syn::DeriveInput);
if item.generics.params.len() != 0 {
return syn::Error::new_spanned(
item.generics,
"`denum::Enum` does not work with generics currently",
)
.into_compile_error()
.into();
}
if item.generics.where_clause.is_some() {
return syn::Error::new_spanned(
item.generics.where_clause,
"`denum::Enum` does not work with `where` clauses currently",
)
.into_compile_error()
.into();
}
let (vis, name, variants) = match item {
syn::DeriveInput {
vis,
ident,
data: syn::Data::Enum(syn::DataEnum { variants, .. }),
..
} => (vis, ident, variants),
_ => {
return syn::Error::new_spanned(item, "`denum::Enum` works only with enums")
.into_compile_error()
.into()
}
};
let discriminants_mod_name = format_ident!("{}Discriminants", name);
let discriminants_enum_name = format_ident!("{}DiscriminantsEnum", name);
let mut discriminants_enum = Vec::new();
let mut discriminant_structs = Vec::new();
let mut enum_discriminant_impls = Vec::new();
for variant in variants {
let variant_name = variant.ident;
discriminant_structs.push(quote! {
#[derive(Clone, Copy)]
pub struct #variant_name;
});
let fields = match variant.fields {
syn::Fields::Named(_) => {
return syn::Error::new_spanned(
variant.fields,
"`denum::Enum` does not work with brace-style variants currently",
)
.into_compile_error()
.into()
}
syn::Fields::Unnamed(fields) => Some(fields.unnamed),
syn::Fields::Unit => None,
};
let value_destructuring = fields
.iter()
.flatten()
.enumerate()
.map(|(index, _)| format_ident!("v{}", index));
let value_destructuring = quote!((#(#value_destructuring,)*));
let value_builder = if fields.is_some() {
value_destructuring.clone()
} else {
quote!()
};
let value_type = fields.into_iter().flatten().map(|field| field.ty);
enum_discriminant_impls.push(quote! {
impl ::denum::EnumDiscriminant for #discriminants_mod_name::#variant_name {
type Enum = #name;
type Value = (#(#value_type,)*);
fn to_discriminants_enum(self) -> #discriminants_enum_name { #discriminants_enum_name::#variant_name }
fn to_enum(self, #value_destructuring: Self::Value) -> Self::Enum { Self::Enum::#variant_name #value_builder }
}
});
discriminants_enum.push(variant_name);
}
quote! {
#[allow(non_snake_case)]
#vis mod #discriminants_mod_name { #(#discriminant_structs)* }
const _: () = {
#[derive(PartialEq, Eq, Hash)]
pub enum #discriminants_enum_name { #(#discriminants_enum,)* }
impl ::denum::Enum for #name {
type DiscriminantsEnum = #discriminants_enum_name;
}
#(#enum_discriminant_impls)*
};
}
.into()
}
This macro has several flaws: it doesn't handle visibility modifiers and attributes correctly, for example. But in the general case, it works, and you can fine-tune it more.
If you want to also support brace-style variants, you can create a struct with the data (instead of the tuple we use currently).
Combining enum is possible if you'll not use a derive macro but a function-like macro, and invoke it on both enums, like:
denum::enums! {
enum A { ... }
enum B { ... }
}
Then the macro will have to combine the discriminants and use something like Either<A, B> when operating with the map.
Unfortunately, a couple of questions arise in that context:
should it be possible to use enum types only once? Or are there some which might be there multiple times?
what should happen if you insert a PageSize and there's already a PageSize in the dictionary?
All in all, a regular struct PaperType is much more suitable to properly model your domain. If you don't want to deal with Option, you can implement the Default trait to ensure that some sensible defaults are always available.
If you really, really want to go with a collection-style interface, the closest approximation would probably be a HashSet<PaperType>. You could then insert a value PaperType::PageSize.

Zero cost builder pattern for recursive data structure using transmute. Is this safe? Is there a better approach?

I would like to create a struct using the builder pattern which must be validated before construction, and I would like to minimize the construction overhead.
I've come up with a nice way to do that using std::mem::transmute, but I'm far from confident that this approach is really safe, or that it's the best approach.
Here's my code: (Rust Playground)
#[derive(Debug)]
pub struct ValidStruct {
items: Vec<ValidStruct>
}
#[derive(Debug)]
pub struct Builder {
pub items: Vec<Builder>
}
#[derive(Debug)]
pub struct InvalidStructError {}
impl Builder {
pub fn new() -> Self {
Self { items: vec![] }
}
pub fn is_valid(&self) -> bool {
self.items.len() % 2 == 1
}
pub fn build(self) -> Result<ValidStruct, InvalidStructError> {
if !self.is_valid() {
return Err(InvalidStructError {});
}
unsafe {
Ok(std::mem::transmute::<Builder, ValidStruct>(self))
}
}
}
fn main() {
let mut builder = Builder::new();
builder.items.push(Builder::new());
let my_struct = builder.build().unwrap();
println!("{:?}", my_struct)
}
So, this seems to work. I think it should be safe because I know the two structs are identical. Am I missing anything? Could this actually cause problems somehow, or is there a cleaner/better approach available?
You can't normally transmute between different structures just because they seem to have the same fields in the same order, because the compiler might change that. You can avoid the risk by forcing the memory layout but you're then fighting the compiler and preventing optimizations. This approach isn't usually recommended and is, in my opinion, not needed here.
What you want is to have
a recursive data structure with public fields so that you can easily build it
an identical structure, built from the first one but with no public access and only built after validation of the first one
And you want to avoid useless copies for performance reasons.
What I suggest is to have a wrapper class. This makes sense because wrapping a struct in another one is totally costless in Rust.
You could thus have
/// This is the "Builder" struct
pub struct Data {
pub items: Vec<Data>,
}
pub struct ValidStruct {
data: Data, // no public access here
}
impl Data {
pub fn build(self) -> Result<ValidStruct, InvalidStructError> {
if !self.is_valid() {
return Err(InvalidStructError {});
}
Ok(Self{ data })
}
}
(alternatively, you could declare a struct Builder as a wrapper of Data too but with a public access to its field)

Rust returning enum as generic type

I'm attempting to create a struct that holds a collection of Nodes. In order to limit the type, each of these Nodes can hold the value is of the enum type NodeVal.
I can then add accessor functions to the Container struct to get and set the values. However, rather than adding a get_node_f64, get_node_i64, etc, I'm attempting to make a generic function that accepts a type that implements the Num trait.
This does not work seemingly because the val property of Node is NodeVal rather than T. However if I make it T it will be able to be any type, which I want to avoid.
Is there any way to achieve what I want to do or am I structuring this the wrong way?
use std::collections::HashMap;
use num_traits::Num;
pub enum NodeVal {
Str(String),
F64(f64),
Uint64(u64),
Int64(i64),
}
pub struct Node {
id: i32,
val: NodeVal
}
pub struct Container {
nodes: HashMap<i32, Node>
}
impl Container {
pub fn new() -> Self {
Container {
nodes: HashMap::new()
}
}
pub fn get_node_str(&self, key: &i32) -> Option<String> {
match self.nodes.get(key) {
Some(r) => match &r.val {
NodeVal::Str(x) => Some(x.to_string()),
_ => None
},
None => None
}
}
// Does not compile
pub fn get_node_num<T: num_traits::Num>(&self, key: &i32) -> Option<T> {
match self.nodes.get(key) {
Some(r) => match &r.val {
NodeVal::F64(x) | NodeVal::Uint64(x) | NodeVal::Int64(x) => Some(*x),
_ => None
},
None => None
}
}
}
This does not work seemingly because the val property of Node is NodeVal rather than T. However if I make it T it will be able to be any type, which I want to avoid.
What I get is that it doesn't work because x is of a different type in the three variants you're matching, which doesn't make any sense to Rust, it complains that the x in F64 is an f64, the x in Uint64 is an u64 and the x in Int64 is an i64, therefore the type of x makes no sense (it has three incompatible types it can't reconcile).
Your use of trait bounds is also incorrect, trait bounds are a way for the caller to specify types, but get_node_num does not consider that for a single second, it doesn't care what the caller wants.
Plus the reasoning doesn't make sense:
However if I make it T it will be able to be any type, which I want to avoid.
get_node_num decides what the return type is, T is completely useless. get_node_num also can't work, because you can't return a "f64 or u64 or i64" in Rust, except by creating a new enum which stores these alternatives.

How best to deal with struct field that can change types

I'm working with a library that uses Rust types to keep track of state. As a simplified example, say you have two structs:
struct FirstStruct {}
struct SecondStruct {}
impl FirstStruct {
pub fn new() -> FirstStruct {
FirstStruct {}
}
pub fn second(self) -> SecondStruct {
SecondStruct {}
}
// configuration methods defined in this struct
}
impl SecondStruct {
pub fn print_something(&self) {
println!("something");
}
pub fn first(self) -> FirstStruct {
FirstStruct {}
}
}
And to actually use these structs you usually follow a pattern like so, after printing you may stay in second state or go back to first state depending on how you're using the library:
fn main() {
let first = FirstStruct::new();
let second = first.second(); // consumes first
second.print_something();
// go back to default state
let _first = second.first();
}
I want to create my own struct that handles the state changes internally and simplifies the interface. This also lets me have a single mutable reference around that I can pass to other functions and call the print method. Using it should look something like this:
fn main() {
let mut combined = CombinedStruct::new(FirstStruct::new());
combined.print();
}
I've come up with the following solution that works, at least in this simplified example:
enum StructState {
First(FirstStruct),
Second(SecondStruct),
}
struct CombinedStruct {
state: Option<StructState>,
}
impl CombinedStruct {
pub fn new(first: FirstStruct) -> CombinedStruct {
CombinedStruct {
state: Some(StructState::First(first)),
}
}
pub fn print(&mut self) {
let s = match self.state.take() {
Some(s) => match s {
StructState::First(first) => first.second(),
StructState::Second(second) => second,
},
None => panic!(),
};
s.print_something();
// If I forget to do this, then I lose access to my struct
// and next call will panic
self.state = Some(StructState::First(s.first()));
}
}
I'm still pretty new to Rust but this doesn't look right to me. I'm not sure if there's a concept I'm missing that could simplify this or if this solution could lead to ownership problems as my application gets more complicated. Is there a better way to do this?
Playground link
I once had a similar problem and went basically with your solution, but I avoided the Option.
I.e. I basically kept your
enum StructState {
First(FirstStruct),
Second(SecondStruct),
}
If an operation tries to convert a FirstStruct to a SecondStruct, I introduced a function try_to_second roughly as follows:
impl StructState {
fn try_to_second(self) -> Result<SecondState, StructState> {
/// implementation
}
}
In this case, an Err indicates that the StructState has not been converted to SecondStruct and preserves the status quo, while an Ok value indicates successfull conversion.
As an alternative, you could try to define try_to_second on FirstStruct:
impl FirstStruct {
fn try_to_second(self) -> Result<FirstStruct, SecondStruct> {
/// implementation
}
}
Again, Err/Ok denote failure/success, but in this case, you have more concrete information encoded in the type.

Resources