Why do we need to convert PaddleOCR to PyTorch model? - pytorch

I can run PaddleOCR model directly but why do I need to convert it PyTorch model? Since It has not had many resources, I didn't find any article or blog describing why we need to convert.

Related

Convert timm model to huggingface

I have a (PyTorch) timm ViT-B/16 model that's been pre-trained on a bunch of domain specific data. I'd like to be able to load the parameters to an equivalent model created using the huggingface transformers library for usage with multi-modal data.
Googling hasn't really helped me locate a convenience function to do the conversion. Apart from going layer by layer and manually translating the keys of the state dictionary, is there any way to do this conversion?
And in case I'm missing something, if there's an intervening layer (say a BatchNorm) that doesn't have an equivalent in either model - is the conversion still useful?

Using AllenNLP Interpret with a HuggingFace model

I would like to use AllenNLP Interpret (code + demo) with a PyTorch classification model trained with HuggingFace (electra base discriminator). Yet, it is not obvious to me, how I can convert my model, and use it in a local allen-nlp demo server.
How should I proceed ?
Thanks in advance
If your task is binary classification, you can look at the BoolQ example in https://github.com/allenai/allennlp-models/blob/main/training_config/classification/boolq_roberta.jsonnet. You can change that configuration to use a different model (such as Electra).
We also just put some new documentation out for the Interpret functionality: https://guide.allennlp.org/interpret
To give you a more specific answer, I'll need to know some more details, like what the task is you're trying to solve, how you trained the original model, etc.

Is there a pretrained model that can detect and classify if a human is in a photo?

I am trying to find a pre-trained model that will classify images based on if there is a human present in the photo or not.
You can use the models trained on the COCO dataset for this.
For example, for Pytorch you can have a look at the official documentation concerning the provided models here.
There are more variety of models if you give it a simple search both for Pytorch and other frameworks.
You can check out the COCO homepage if you need more information concerning the dataset and the tasks it supports.
You may also find These useful:
Detecting people using Yolo-OpenCV
Yolo object detection in pytorch
Another Yolo implementation in Pytorch
Similar question on ai.stackexchange
You can also utilize frameworks such as Detectorn2, mmdetection for these tasks.(Or Tensorflow's ObjectDetectionAPI , ect)

How to convert Turi Create created CoreML models to Keras?

I'm looking for a way to do the conversion, the only information I've found is how to go from Keras and other to CoreML.
You'll have to write your own code to do this, there is no automated conversion tool for Core ML models to Keras (only the other way around).

Extract CNN features using Caffe and train using SVM

I want to extract features using caffe and train those features using SVM. I have gone through this link: http://caffe.berkeleyvision.org/gathered/examples/feature_extraction.html. This links provides how we can extract features using caffenet. But I want to use Lenet architecture here. I am unable to change this line of command for Lenet:
./build/tools/extract_features.bin models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel examples/_temp/imagenet_val.prototxt fc7 examples/_temp/features 10 leveldb
And also, after extracting the features, how to train these features using SVM? I want to use python for this. For eg: If I get features from this code:
features = net.blobs['pool2'].data.copy()
Then, how can I train these features using SVM by defining my own classes?
You have two questions here:
Extracting features using LeNet
Training an SVM
Extracting features using LeNet
To extract the features from LeNet using the extract_features.bin script you need to have the model file (.caffemodel) and the model definition for testing (.prototxt).
The signature of extract_features.bin is here:
Usage: extract_features pretrained_net_param feature_extraction_proto_file extract_feature_blob_name1[,name2,...] save_feature_dataset_name1[,name2,...] num_mini_batches db_type [CPU/GPU] [DEVICE_ID=0]
So if you take as an example val prototxt file this one (https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/train_val.prototxt), you can change it to the LeNet architecture and point it to your LMDB / LevelDB. That should get you most of the way there. Once you did that and get stuck, you can re-update your question or post a comment here so we can help.
Training SVM on top of features
I highly recommend using Python's scikit-learn for training an SVM from the features. It is super easy to get started, including reading in features saved from Caffe's format.
Very lagged reply, but should help.
Not 100% what you want, but I have used the VGG-16 net to extract face features using caffe and perform a accuracy test on a small subset of the LFW dataset. Exactly what you needed is in the code. The code creates classes for training and testing and pushes them into the SVM for classification.
https://github.com/wajihullahbaig/VGGFaceMatching

Resources