How to ensure data consistency between two different aggregates in an event-driven architecture? - domain-driven-design

I will try to keep this as generic as possible using the “order” and “product” example, to try and help others that come across this question.
The Structure:
In the application we have 3 different services, 2 services that follow the event sourcing pattern and one that is designed for read only having the separation between our read and write views:
- Order service (write)
- Product service (write)
- Order details service (Read)
The Background:
We are currently storing the relationship between the order and product in only one of the write services, for example within order we have a property called ‘productItems’ which contains a list of the aggregate Ids from Product for the products that have been added to the order. Each product added to an order is emitted onto Kafka where the read service will update the view and form the relationships between the data.
 
The Problem:
As we pull back by aggregate Id for the order and the product to update them, if a product was to be deleted, there is no way to disassociate the product from the order on the write side.
 
This in turn means we have inconsistency, that the order holds a reference to a product that no longer exists within the product service.
The Ideas:
Master the relationship on both sides, which means when the product is deleted, we can look at the associated orders and trigger an update to remove from each order (this would cause duplication of reference).
Create another view of the data that shows the relationships and use a saga to do a clean-up. When a delete is triggered, it will look up the view database, see the relationships within the data and then trigger an update for each of the orders that have the product associated.
Does it really matter having the inconsistencies if the Product details service shows the correct information? Because the view database will consume the product deleted event, it will be able to safely remove the relationship that means clients will be able to get the correct view of the data even if the write models appear inconsistent. Based on the order of the events, the state will always appear correct in the read view.
Another thought: as the aggregate Id is deleted, it should never be reused which means when we have checks on the aggregate such as: “is this product in the order already?” will never trigger as the aggregate Id will never be repurposed meaning the inconsistency should not cause an issue when running commands in the future.
Sorry for the long read, but these are all the ideas we have thought of so far, and I am keen to gain some insight from the community, to make sure we are on the right track or if there is another approach to consider.
 
Thank you in advance for your help.

Event sourcing suites very well human and specifically human-paced processes. It helps a lot to imagine that every event in an event-sourced system is delivered by some clerk printed on a sheet of paper. Than it will be much easier to figure out the suitable solution.
What's the purpose of an order? So that your back-office personnel would secure the necessary units at a warehouse, then customer would do a payment and you start shipping process.
So, I guess, after an order is placed, some back-office system can process it and confirm that it can be taken into work and invoicing. Or it can return the order with remarks that this and that line are no longer available, so that a customer could agree to the reduced order or pick other options.
Another option is, since the probability of a customer ordering a discontinued item is low, just not do this check. But if at the shipping it still occurs - then issue a refund and some coupon for inconvenience. Why is it low? Because the goods are added from an online catalogue, which reflects the current state. The availability check can be done on the 'Submit' button click. So, an inconsistency may occur if an item is discontinued the same minute (or second) the order has been submitted. And usually the actual decision to discontinue is made up well before the information was updated in the Product service due to some external reasons.
Hence, I suggest to use eventual consistency. Since an event-sourced entity should only be responsible for its own consistency and not try to fulfil someone else's responsibility.

Related

CQRS Read Model Projections: How complex is too complex a data transformation

I want to sanity check myself on a view projection, in regards to if an intermediary concept can purely exist in the read model while providing a bridge between commands.
Let me use a contrived example to explain.
We place an order which raises an OrderPlaced event. The workflow then involves generating a picking slip, which is used to prepare a shipment.
A picking slip can be generated from an order (or group of orders) without any additional information being supplied from any external source or user. Is it acceptable then that the picking slip can be represented purely as a read model?
So:
PlaceOrderCommand -> OrderPlacedEvent
OrderPlacedEvent -> PickingSlipView
The warehouse manager can then view a picking slip, select the lines they would like to ship, and then perform a PrepareShipment command. A ShipmentPrepared event will then update the original order, and remove the relevant lines from the PickingSlipView.
I know it's a toy example, but I have a conceptually similar use case where a colleague believes the PickingSlip should be a domain entity/aggregate in its own right, as it's conceptually different to order. So you have PlaceOrder, GeneratePickingSlip, and PrepareShipment commands.
The GeneratePickingSlip command however simply takes an order number (identifier), transforms the order data into a picking slip entity, and persists the entity. You can't modify or remove a picking slip or perform any action on it, apart from using it to prepare a shipment.
This feels like introducing unnecessary overhead on the write model, for what is ultimately just a transformation of existing information to enable another command.
So (and without delving deeply into the problem space of warehouses and shipping)...
Is what I'm proposing a legitimate use case for a read model?
Acting as an intermediary between two commands, via transformation of some data into a different view. Or, as my colleague proposes, should every concept be represented in the write model in all cases?
I feel my approach is simpler, and avoiding unneeded complexity, but I'm new to CQRS and so perhaps missing something.
Edit - Alternative Example
Providing another example to explore:
We have a book of record for categories, where each record is information about products and their location. The book of record is populated by an external system, and contains SKU numbers, mapped to available locations:
Book of Record (Electronics)
SKU# Location1 Location2 Location3 ... Location 10
XXXX Introduce Remove Introduce ... N/A
YYYY N/A Introduce Introduce ... Remove
Each book of record is an entity, and each line is a value object.
The book of record is used to generate different Tasks (which are grouped in a TaskPlan to be assigned to a person). The plan may only cover a subset of locations.
There are different types of Tasks: One TaskPlan is for the individual who is on a location to add or remove stock from shelves. Call this an AllocateStock task. Another type of Task exists for a regional supervisor managing multiple locations, to check that shelving is properly following store guidelines, say CheckDisplay task. For allocating stock, we are interested in both introduced and removed SKUs. For checking the displays, we're only interested in newly Introduced SKUs, etc.
We are exploring two options:
Option 1
The person creating the tasks has a View (read model) that allows them to select Book of Records. Say they select Electronics and Fashion. They then select one or more locations. They could then submit a command like:
GenerateCheckDisplayTasks(TaskPlanId, List<BookOfRecordId>, List<Locations>)
The commands would then orchestrate going through the records, filtering out locations we don't need, processing only the 'Introduced' items, and creating the corresponding CheckDisplayTasks for each SKU in the TaskPlan.
Option 2
The other option is to shift the filtering to the read model before generating the tasks.
When a book of record is added a view model for each type of task is maintained. The data might be transposed, and would only include relevant info. ie. the CheckDisplayScopeView might project the book of record to:
Category SKU Location
Electronics (BookOfRecordId) XXXX Location1
Electronics (BookOfRecordId) XXXX Location3
Electronics (BookOfRecordId) YYYY Location2
Electronics (BookOfRecordId) YYYY Location3
Fashion (BookOfRecordId) ... ... etc
When generating tasks, the view enables the user to select the category and locations they want to generate the tasks for. Perhaps they select the Electronics category and Location 1 and 3.
The command is now:
GenerateCheckDisplayTasks(TaskPlanId, List<BookOfRecordId, SKU, Location>)
Where the command now no longer is responsible for the logic needed to filter out the locations, the Removed and N/A items, etc.
So the command for the first option just submits the ID of the entity that is being converted to tasks, along with the filter options, and does all the work internally, likely utilizing domain services.
The second option offloads the filtering aspect to the view model, and now the command submits values that will generate the tasks.
Note: In terms of the guidance that Aggregates shouldn't appear out of thin air, the Task Plan aggregate will create the Tasks.
I'm trying to determine if option 2 is pushing too much responsibility onto the read model, or whether this filtering behavior is more applicable there.
Sorry, I attempted to use the PickingSlip example as I thought it would be a more recognizable problem space, but realize now that there are connotations that go along with the concept that may have muddied the waters.
The answer to your question, in my opinion, very much depends on how you design your domain, not how you implement CQRS. The way you present it, it seems that all these operations and aggregates are in the same Bounded Context but at first glance, I would think that there are 3 (naming is difficult!):
Order Management or Sales, where orders are placed
Warehouse Operations, where goods are packaged to be shipped
Shipments, where packages are put in trucks and leave
When an Order is Placed in Order Management, Warehouse reacts and starts the Packaging workflow. At this point, Warehouse should have all the data required to perform its logic, without needing the Order anymore.
The warehouse manager can then view a picking slip, select the lines they would like to ship, and then perform a PrepareShipment command.
To me, this clearly indicates the need for an aggregate that will ensure the invariants are respected. You cannot select items not present in the picking slip, you cannot select more items than the quantities specified, you cannot select items that have already been packaged in a previous package and so on.
A ShipmentPrepared event will then update the original order, and remove the relevant lines from the PickingSlipView.
I don't understand why you would modify the original order. Also, removing lines from a view is not a safe operation per se. You want to guarantee that concurrency doesn't cause a single item to be placed in multiple packages, for example. You guarantee that using an aggregate that contains all the items, generates the packaging instructions, and marks the items of each package safely and transactionally.
Acting as an intermediary between two commands
Aggregates execute the commands, they are not in between.
Viewing it from another angle, an indication that you need that aggregate is that the PrepareShippingCommand needs to create an aggregate (Shipping), and according to Udi Dahan, you should not create aggregate roots (out of thin air). Instead, other aggregate roots create them. So, it seems fair to say that there needs to be some aggregate, which ensures that the policies to create shippings are applied.
As a final note, domain design is difficult and you need to know the domain very well, so it is very likely that my proposed solution is not correct, but I hope the considerations I made on each step are helpful to you to come up with the right solution.
UPDATE after question update
I read a couple of times the updated question and updated several times my answer, but ended up every time with answers very specific to your example again and I'm most likely missing a lot of details to actually be helpful (I'd be happy to discuss it on another channel though). Therefore, I want to go back to the first sentence of your question to add an important comment that I missed:
an intermediary concept can purely exist in the read model, while providing a bridge between commands.
In my opinion, read models are disposable. They are not a single source of truth. They are a representation of the data to easily fulfil the current query needs. When these query needs change, old read models are deleted and new ones are created based on the data from the write models.
So, only based on this, I would recommend to not prepare a read model to facilitate your commands operations.
I think that your solution is here:
When a book of record is added a view model for each type of task is maintained. The data might be transposed, and would only include relevant info.
If I understand it correctly, what you should do here is not create view model, but create an Aggregate (or multiple). Then this aggregate can receive the commands, apply the business rules and mutate the state. So, instead of having a domain service reading data from "clever" read models and putting it all together, you have an aggregate which encapsulates the data it needs and the business logic.
I hope it makes sense. It's a broad topic and we could talk about it for hours probably.

Modeling one-to-many relations using Domain Driven Design

This question is more of a general question about how to model simple one-to-many relations using collections: should a change in a list item be reflected in the version of the aggregate containing it?
The domain is about meeting scheduling (like in Outlook).
I have a Meeting entity, which can have multiple Participants.
A participant can accept/decline meeting requests.
Rescheduling a meeting nullifies all of the participants confirmations.
I thought of two ways to model this.
Option 1
The Meeting aggregate will contain a list of Participants where each Participant has a ParticipantId and a Status (accepted/denied).
The problem here is that every Accept or Deny command, for a specific participant, increments the Meeting's version, which means two participants will enter a race condition if trying to Accept the meeting request based on the same original version.
Although this could be solved by re-reading the Meeting's document and retrying the Accept command, it's quite annoying considering how often this could happen.
Another approach is to ignore the meeting's version when executing the Accept command, but this introduces a new problem: what happens if, after sending the meeting requests, the meeting has been rescheduled? In this case we can't afford to ignore the Meeting's version, because this time the version DOES represent a real version that should be considered.
BTW, is it at all a good practice to ignore the version in some of the commands and not in others?
Option 2
Extract a Participation aggregate out of Meeting.
Participation will have MeetingId, ParticipantId, and Status.
It will also have its own version.
This way, when participant X Accepts the meeting request, only the relevant Participation will be modified, and the rest will be left intact.
And, when rescheduling the meeting, a "Meeting Rescheduled" event will be published and an event handler will respond to it by resetting all of the Participations' statuses to "NotAccepted" regardless of their current version.
On the one hand this sounds logical in the sense that a meeting's version shouldn't be incremented just because someone accepted/denied its request.
On the other hand, modeling Participation as a standalone aggregate doesn't sound quite right to me, because it is has no meaning outside of the context of the meeting.
Anyway, would love to get feedback on this and see the various approaches to this problem.
Although this could be solved by re-reading the Meeting's document and retrying the Accept command, it's quite annoying considering how often this could happen.
This looks like a modeling error. You should keep in mind that the meeting aggregate is not the book of record for the participants availability - the real world is. So the message shouldn't be AcceptInvitation, but instead InvitationAccepted. There shouldn't be a conflict about this, because the domain model doesn't get to veto events outside of its authority boundary.
You might, depending on your implementation, end up with a concurrent modification exception in your plumbing, but that's something that you should be handling automatically (ie: expected version any, or a retry).
Another approach is to ignore the meeting's version when executing the Accept command, but this introduces a new problem: what happens if, after sending the meeting requests, the meeting has been rescheduled?
The solution here is to model more carefully. Yes, sometimes you will get a message that accepts or declines an invitation that has expired.
Put another way: race conditions don't exist.
A microsecond difference in timing shouldn’t make a difference to core business behaviors.
What happens to Alice, who replied instantly to the invitation, when the meeting is rescheduled? Why wouldn't the same thing happen to Bob, when his reply arrives just after the meeting is rescheduled?
Participation as a standalone aggregate doesn't sound quite right to me, because it is has no meaning outside of the context of the meeting.
I find that heuristic isn't particularly effective. It's much more important to understand whether entities can change state independently, or if their changes need to be coordinated.
Actually, the Meeting aggregate is used to track the participants availability. That's what it purpose is. Unless I didn't fully understand you...
It's a bit subtle, and I didn't spell it out very well.
Suppose the model says that I'm available, but an emergency in the real world calls me away. What happens? Am I blocked from going to the hospital because the model says I have to go to a meeting? Can somebody cancel my emergency by changing the invitation I've submitted?
Furthermore, if I'm away on an emergency, are you available for a meeting that is scheduled for the same time as the meeting you and I were going to have?
In this space, the real world is the authority for whether or not somebody is available. The model is just looking at a cached copy of a message describing whether or not somebody was available in the past.
The cached information being used by the model is not guaranteed to be complete. See Greg Young on warehouse systems and exception reports.
which makes me think that perhaps the Meeting aggregate should have two version fields: one will be a strong version which, when incremented, represents a breaking change, and another soft version for non-breaking changes. Does this make any sense?
Not really. Version is not, as far as I know, a term taken from the ubiquitous language of scheduling meetings. It's meta data, if it exists at all, and the business rules in your model should not depend upon meta data.
I agree, but a Meeting ID (or any ID for that matter) is also not part of the ubiquitous language, yet I might pass it back and forth between my domain world and external worlds.

How to resolve Order and Warehouse bounded contexts dependency?

I am working on DDD project and I am currently focused on two bouned contexts, Orders and Warehouse.
What confuses me is the following situation:
Order keep track of all the placed orders, and warehouse keeps track about all the available inventory. If user places one order for certain product item, that would mean one less item of that product in a warehouse. I am oversimplifying this process, so please bear with me.
Since two domain models are placed inside of a different BC, i am currently relying on eventual consistency ie. after one item has been sold, it would eventually be removed from the warehouse.
That situation unfortunately leads to the problem scenario where another user could simultaneously make another order of the same item, and it would appear as available until eventual consistency kicks is. That is something it is unacceptable by the domain expert.
So IMO I am stuck with two options
merge order and warehouse (at least the part regarding product
inventory, units available in warehouse) into one BC
have Order BC (or microservice if you wish) to be dependent of Warehouse BC (microservice) in order to pull a live product units
available
Which option does actually follows DDD patern? Is there another way out?
You could use a reservation system with a timeout.
Using a messaging analogy: With a broker-style queuing mechanism (such as RabbitMQ) you get a message from the queue and you have control over it until you either acknowledge that it can be removed from the queue or you release it back to the queue.
You could do the same thing in your ordering process. You reserve any items on your order. SO when you add them they have a status of, say, reserving and upon sending some message to reserve the items. If the response comes back you can decide how to proceed. Perhaps you could add any items that cannot be reserved onto a back order or try again later.
There are going to be different ways to approach this. Depending on your business case it may be acceptable to only check availability when someone really accepts the order.
If you domain expert reckons it is totally unacceptable that having this resolved at the end of the process then you could move it to the start. The issue is of course that user A could reserve and never buy thereby losing user B as a customer; whereas only applying the real "taking" of the item at the end of the process is closer to ensuring a purchase. But that is a business decision.
This issue is a really great example of where reality actually is eventually consistent. Is it really the best thing to decline an order if there is no inventory currently in the warehouse - even if there was a replenishment due in the next 20 minutes?
What if the item was actually on the shelf, but the operator hadn't yet keyed it into the system?
Sometimes designers and domain experts assume that people want 100% consistency, when really, users might be willing to accept a delay in confirmation of their order, if it increased the chance that their order would be accepted rather than rejected.
In the case above, why make it the user's job to retry their order N minutes later? In an eventually consistent system, you can accommodate such timing flexibility by including a timeout to retry the attempt to fulfill the order for a period of time before confirming to the client that it really wasn't possible.
There are technical solutions that will give you 100% consistency, but I think really this is not a technical challenge but a cultural/mindset one, changing people's minds about what is possible & acceptable to achieve an what is actually a better outcome.
IMO you can build a PlaceOrderSaga which will ask for inventory availability before placing the order.

CQRS aggregates

I'm new to the CQRS/ES world and I have a question. I'm working on an invoicing web application which uses event sourcing and CQRS.
My question is this - to my understanding, a new command coming into the system (let's say ChangeLineItemPrice) should pass through the domain model so it can be validated as a legal command (for example, to check if this line item actually exists, the price doesn't violate any business rules, etc). If all goes well (the command is not rejected) - then the appropriate event is created and stored (for example LineItemPriceChanged)
The thing I didn't quite get is how do I keep this aggregate in memory to begin with, before trying to apply the command. If I have a million invoices in the system, should I playback the whole history every time I want to apply a command? Do I always save the event without any validations and do the validations when constructing the view models / projections?
If I misunderstood any part of the process I would appreciate your feedback.
Thanks for your help!
You are not alone, this is a common misunderstanding. Let me answer the validation part first:
There are 2 types of validation which take place in this kind of system. The first is the kind where you look for valid email addresses, numeric only or required fields. This type is done before the command is even issued. A command which contains these sorts of problems should not be raised as commands (for belt and braces you can check at the domain side but this is not a domain concern and you are better off just preventing this scenario).
The next type of validation is when it is a domain concern. It could be the kind of thing you mention where you check prices are within a set of specified parameters. This is a domain concept the business people would understand, do and be able to articulate.
The next phase is for the domain to apply the state change and raise the associated events. These are then persisted and on success, published for the rest of the app.
All of this is can be done with the aggregate in memory. The actions are coordinated with a domain service which handles the command. It loads the aggregate, apply's all it's past events (or loads a snapshot) then issues the command. On success of the command it requests all the new uncommitted events and tries to persist them. On success it publishes the new events.
As you see it only loads the events for that specific aggregate. Even with a lot of events this process is lightning fast. If performance is a problem there are strategies such as keeping aggregates in memory or snapshotting which you can apply.
To your last point about validating events. As they can only be generated by your aggregate they are trustworthy.
If you want more detail check out my overview of CQRS and ES here. And take a look at my post about how to build aggregate roots here.
Good luck - I hope they help!
It is right that you have to replay the event to 'rehydrate' the domain aggregate. But you don't have to replay all events for all invoices. If you store the entity id of the root aggregate in the events, you can just select and replay the events that with the relevant id.
Then, how do you find the relevant aggregate root id? One of the read repositories should contain the relevant information to get the id, based on a set of search criteria.

In CQRS, how do I communicate a list of allowable methods on an aggrregate to the UI?

I have an aggregate root 'Order', and it has a number of methods on it which internally set its 'Status' field:
Submit
Place On Hold
Take Off Hold
Confirm
Cancel
etc.
The available actions are dependent upon the current Status of the order (e.g. it can't be put on hold if it's already on hold). The problem is that I need to provide a query to tell the UI which commands are are available so I can hide the operations that would otherwise throw an InvalidOperationException.
How do I do this with minimal DRY violation?
The simplest solution is to project current status along with available transitions to read/query model and select it along with the data to display.
Example:
PlaceOnHoldCommand results in OrderPlacedOnHoldEvent which (besides being put in EventStore) is published and handled by OrderTransitionsEventHandler which denormalizes available transitions to a DB table associated with Order. The client selects available transitions and acts accordingly (hides unavailable buttons or sth. like that).
This is of course one of options. Don't expect however that there will be no duplication whatsoever. CQRS helps to manage complexity and sometimes this means slight violations of DRY occur.

Resources