I was trying to submit a pyspark application using the command
spark-submit --master yarn --deploy-mode cluster app.py
And I am getting the INFO Client: Application report for application_1663517069168_0003 (state: ACCEPTED) endlessly
I have created an AWS EMR cluster with 1 master and 1 core node only and trying to submit application by connecting to the master node
22/09/18 18:25:16 INFO RMProxy: Connecting to ResourceManager at ip-172-31-90-73.ec2.internal/172.31.90.73:8032
22/09/18 18:25:16 INFO Client: Requesting a new application from cluster with 1 NodeManagers
22/09/18 18:25:16 INFO Configuration: resource-types.xml not found
22/09/18 18:25:16 INFO ResourceUtils: Unable to find 'resource-types.xml'.
22/09/18 18:25:16 INFO ResourceUtils: Adding resource type - name = memory-mb, units = Mi, type = COUNTABLE
22/09/18 18:25:16 INFO ResourceUtils: Adding resource type - name = vcores, units = , type = COUNTABLE
22/09/18 18:25:16 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (6144 MB per container)
22/09/18 18:25:16 INFO Client: Will allocate AM container, with 2432 MB memory including 384 MB overhead
22/09/18 18:25:16 INFO Client: Setting up container launch context for our AM
22/09/18 18:25:16 INFO Client: Setting up the launch environment for our AM container
22/09/18 18:25:16 INFO Client: Preparing resources for our AM container
22/09/18 18:25:16 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
22/09/18 18:25:19 INFO Client: Uploading resource file:/mnt/tmp/spark-fb80e661-49d6-4738-8f29-351b4efdf337/__spark_libs__2372700901935780238.zip -> hdfs://ip-172-31-90-73.ec2.internal:8020/user/hadoop/.sparkStaging/application_1663517069168_0003/__spark_libs__2372700901935780238.zip
22/09/18 18:25:21 INFO Client: Uploading resource file:/home/hadoop/app.py -> hdfs://ip-172-31-90-73.ec2.internal:8020/user/hadoop/.sparkStaging/application_1663517069168_0003/app.py
22/09/18 18:25:21 INFO Client: Uploading resource file:/usr/lib/spark/python/lib/pyspark.zip -> hdfs://ip-172-31-90-73.ec2.internal:8020/user/hadoop/.sparkStaging/application_1663517069168_0003/pyspark.zip
22/09/18 18:25:21 INFO Client: Uploading resource file:/usr/lib/spark/python/lib/py4j-0.10.7-src.zip -> hdfs://ip-172-31-90-73.ec2.internal:8020/user/hadoop/.sparkStaging/application_1663517069168_0003/py4j-0.10.7-src.zip
22/09/18 18:25:21 INFO Client: Uploading resource file:/mnt/tmp/spark-fb80e661-49d6-4738-8f29-351b4efdf337/__spark_conf__1449366969974574614.zip -> hdfs://ip-172-31-90-73.ec2.internal:8020/user/hadoop/.sparkStaging/application_1663517069168_0003/__spark_conf__.zip
22/09/18 18:25:22 INFO SecurityManager: Changing view acls to: hadoop
22/09/18 18:25:22 INFO SecurityManager: Changing modify acls to: hadoop
22/09/18 18:25:22 INFO SecurityManager: Changing view acls groups to:
22/09/18 18:25:22 INFO SecurityManager: Changing modify acls groups to:
22/09/18 18:25:22 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hadoop); groups with view permissions: Set(); users with modify permissions: Set(hadoop); groups with modify permissions: Set()
22/09/18 18:25:24 INFO Client: Submitting application application_1663517069168_0003 to ResourceManager
22/09/18 18:25:24 INFO YarnClientImpl: Submitted application application_1663517069168_0003
22/09/18 18:25:25 INFO Client: Application report for application_1663517069168_0003 (state: ACCEPTED)
22/09/18 18:25:25 INFO Client:
client token: N/A
diagnostics: [Sun Sep 18 18:25:24 +0000 2022] Application is added to the scheduler and is not yet activated. Queue's AM resource limit exceeded. Details : AM Partition = CORE; AM Resource Request = <memory:2432, max memory:6144, vCores:1, max vCores:4>; Queue Resource Limit for AM = <memory:3072, vCores:1>; User AM Resource Limit of the queue = <memory:3072, vCores:1>; Queue AM Resource Usage = <memory:2432, vCores:1>;
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: default
start time: 1663525524352
final status: UNDEFINED
tracking URL: http://ip-172-31-90-73.ec2.internal:20888/proxy/application_1663517069168_0003/
user: hadoop
22/09/18 18:25:26 INFO Client: Application report for application_1663517069168_0003 (state: ACCEPTED)
22/09/18 18:25:27 INFO Client: Application report for application_1663517069168_0003 (state: ACCEPTED)
22/09/18 18:25:28 INFO Client: Application report .......```
The problem is pretty clear just by reading your log
Application is added to the scheduler and is not yet activated. Queue's AM resource limit exceeded. Details : AM Partition = CORE; AM Resource Request = <memory:2432, max memory:6144, vCores:1, max vCores:4>; Queue Resource Limit for AM = <memory:3072, vCores:1>; User AM Resource Limit of the queue = <memory:3072, vCores:1>; Queue AM Resource Usage = <memory:2432, vCores:1>;
You're requesting more resources than your cluster has. You can change that by giving more cores to your EMR cluster
Related
While starting spark-shell --master yarn --deploy-mode client I am getting error :
Yarn application has already ended! It might have been killed or
unable to launch application master.
Here is the complete log from Yarn:
19/08/28 00:54:55 INFO client.RMProxy: Connecting to ResourceManager
at /0.0.0.0:8032
Container: container_1566921956926_0010_01_000001 on
rhel7-cloudera-dev_33917
=============================================================================== LogType:stderr Log Upload Time:28-Aug-2019 00:46:31 LogLength:523 Log
Contents: SLF4J: Class path contains multiple SLF4J bindings. SLF4J:
Found binding in
[jar:file:/yarn/local/usercache/rhel/filecache/26/__spark_libs__5634501618166443611.zip/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in
[jar:file:/etc/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an
explanation. SLF4J: Actual binding is of type
[org.slf4j.impl.Log4jLoggerFactory]
LogType:stdout Log Upload Time:28-Aug-2019 00:46:31 LogLength:5597 Log
Contents: 2019-08-28 00:46:19 INFO SignalUtils:54 - Registered signal
handler for TERM 2019-08-28 00:46:19 INFO SignalUtils:54 - Registered
signal handler for HUP 2019-08-28 00:46:19 INFO SignalUtils:54 -
Registered signal handler for INT 2019-08-28 00:46:19 INFO
SecurityManager:54 - Changing view acls to: yarn,rhel 2019-08-28
00:46:19 INFO SecurityManager:54 - Changing modify acls to: yarn,rhel
2019-08-28 00:46:19 INFO SecurityManager:54 - Changing view acls
groups to: 2019-08-28 00:46:19 INFO SecurityManager:54 - Changing
modify acls groups to: 2019-08-28 00:46:19 INFO SecurityManager:54 -
SecurityManager: authentication disabled; ui acls disabled; users
with view permissions: Set(yarn, rhel); groups with view permissions:
Set(); users with modify permissions: Set(yarn, rhel); groups with
modify permissions: Set() 2019-08-28 00:46:20 INFO
ApplicationMaster:54 - Preparing Local resources 2019-08-28 00:46:21
INFO ApplicationMaster:54 - ApplicationAttemptId:
appattempt_1566921956926_0010_000001 2019-08-28 00:46:21 INFO
ApplicationMaster:54 - Waiting for Spark driver to be reachable.
2019-08-28 00:46:21 INFO ApplicationMaster:54 - Driver now available:
rhel7-cloudera-dev:34872 2019-08-28 00:46:21 INFO
TransportClientFactory:267 - Successfully created connection to
rhel7-cloudera-dev/192.168.56.112:34872 after 107 ms (0 ms spent in
bootstraps) 2019-08-28 00:46:22 INFO ApplicationMaster:54 -
=============================================================================== YARN executor launch context: env:
CLASSPATH -> {{PWD}}{{PWD}}/spark_conf{{PWD}}/spark_libs/$HADOOP_CONF_DIR$HADOOP_COMMON_HOME/share/hadoop/common/$HADOOP_COMMON_HOME/share/hadoop/common/lib/$HADOOP_HDFS_HOME/share/hadoop/hdfs/$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/$HADOOP_YARN_HOME/share/hadoop/yarn/$HADOOP_YARN_HOME/share/hadoop/yarn/lib/*
$HADOOP_COMMON_HOME/$HADOOP_COMMON_HOME/lib/$HADOOP_HDFS_HOME/$HADOOP_HDFS_HOME/lib/$HADOOP_MAPRED_HOME/$HADOOP_MAPRED_HOME/lib/$HADOOP_YARN_HOME/$HADOOP_YARN_HOME/lib/$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib//etc/hadoop-2.6.0/etc/hadoop:/etc/hadoop-2.6.0/share/hadoop/common/lib/:/etc/hadoop-2.6.0/share/hadoop/common/:/etc/hadoop-2.6.0/share/hadoop/hdfs:/etc/hadoop-2.6.0/share/hadoop/hdfs/lib/:/etc/hadoop-2.6.0/share/hadoop/hdfs/:/etc/hadoop-2.6.0/share/hadoop/yarn/lib/:/etc/hadoop-2.6.0/share/hadoop/yarn/:/etc/hadoop-2.6.0/share/hadoop/mapreduce/lib/:/etc/hadoop-2.6.0/share/hadoop/mapreduce/:/etc/hadoop-2.6.0/contrib/capacity-scheduler/.jar{{PWD}}/spark_conf/hadoop_conf
SPARK_DIST_CLASSPATH -> /etc/hadoop-2.6.0/etc/hadoop:/etc/hadoop-2.6.0/share/hadoop/common/lib/:/etc/hadoop-2.6.0/share/hadoop/common/:/etc/hadoop-2.6.0/share/hadoop/hdfs:/etc/hadoop-2.6.0/share/hadoop/hdfs/lib/:/etc/hadoop-2.6.0/share/hadoop/hdfs/:/etc/hadoop-2.6.0/share/hadoop/yarn/lib/:/etc/hadoop-2.6.0/share/hadoop/yarn/:/etc/hadoop-2.6.0/share/hadoop/mapreduce/lib/:/etc/hadoop-2.6.0/share/hadoop/mapreduce/:/etc/hadoop-2.6.0/contrib/capacity-scheduler/.jar
SPARK_YARN_STAGING_DIR -> *********(redacted)
SPARK_USER -> *********(redacted)
SPARK_CONF_DIR -> /etc/spark/conf
SPARK_HOME -> /etc/spark
command:
{{JAVA_HOME}}/bin/java \
-server \
-Xmx1024m \
-Djava.io.tmpdir={{PWD}}/tmp \
'-Dspark.driver.port=34872' \
-Dspark.yarn.app.container.log.dir= \
-XX:OnOutOfMemoryError='kill %p' \
org.apache.spark.executor.CoarseGrainedExecutorBackend \
--driver-url \
spark://CoarseGrainedScheduler#rhel7-cloudera-dev:34872 \
--executor-id \
\
--hostname \
\
--cores \
1 \
--app-id \
application_1566921956926_0010 \
--user-class-path \
file:$PWD/app.jar \
1>/stdout \
2>/stderr
resources:
spark_libs -> resource { scheme: "hdfs" host: "rhel7-cloudera-dev" port: 9000 file:
"/user/rhel/.sparkStaging/application_1566921956926_0010/spark_libs__5634501618166443611.zip"
} size: 232107209 timestamp: 1566933362350 type: ARCHIVE visibility:
PRIVATE
__spark_conf -> resource { scheme: "hdfs" host: "rhel7-cloudera-dev" port: 9000 file:
"/user/rhel/.sparkStaging/application_1566921956926_0010/spark_conf.zip"
} size: 208377 timestamp: 1566933365411 type: ARCHIVE visibility:
PRIVATE
=============================================================================== 2019-08-28 00:46:22 INFO RMProxy:98 - Connecting to ResourceManager
at /0.0.0.0:8030 2019-08-28 00:46:22 INFO YarnRMClient:54 -
Registering the ApplicationMaster 2019-08-28 00:46:22 INFO
YarnAllocator:54 - Will request 2 executor container(s), each with 1
core(s) and 1408 MB memory (including 384 MB of overhead) 2019-08-28
00:46:22 INFO YarnAllocator:54 - Submitted 2 unlocalized container
requests. 2019-08-28 00:46:22 INFO ApplicationMaster:54 - Started
progress reporter thread with (heartbeat : 3000, initial allocation :
200) intervals 2019-08-28 00:46:22 ERROR ApplicationMaster:43 -
RECEIVED SIGNAL TERM 2019-08-28 00:46:23 INFO ApplicationMaster:54 -
Final app status: UNDEFINED, exitCode: 16, (reason: Shutdown hook
called before final status was reported.) 2019-08-28 00:46:23 INFO
ShutdownHookManager:54 - Shutdown hook called
Container: container_1566921956926_0010_02_000001 on
rhel7-cloudera-dev_33917
=============================================================================== LogType:stderr Log Upload Time:28-Aug-2019 00:46:31 LogLength:3576 Log
Contents: SLF4J: Class path contains multiple SLF4J bindings. SLF4J:
Found binding in
[jar:file:/yarn/local/usercache/rhel/filecache/26/__spark_libs__5634501618166443611.zip/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in
[jar:file:/etc/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an
explanation. SLF4J: Actual binding is of type
[org.slf4j.impl.Log4jLoggerFactory] Exception in thread "main"
java.io.IOException: Failed on local exception: java.io.IOException;
Host Details : local host is: "rhel7-cloudera-dev/192.168.56.112";
destination host is: "rhel7-cloudera-dev":9000; at
org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:772) at
org.apache.hadoop.ipc.Client.call(Client.java:1474) at
org.apache.hadoop.ipc.Client.call(Client.java:1401) at
org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:232)
at com.sun.proxy.$Proxy9.getFileInfo(Unknown Source) at
org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getFileInfo(ClientNamenodeProtocolTranslatorPB.java:752)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498) at
org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187)
at
org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy10.getFileInfo(Unknown Source) at
org.apache.hadoop.hdfs.DFSClient.getFileInfo(DFSClient.java:1977) at
org.apache.hadoop.hdfs.DistributedFileSystem$18.doCall(DistributedFileSystem.java:1118)
at
org.apache.hadoop.hdfs.DistributedFileSystem$18.doCall(DistributedFileSystem.java:1114)
at
org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at
org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1114)
at
org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$7$$anonfun$apply$3.apply(ApplicationMaster.scala:235)
at
org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$7$$anonfun$apply$3.apply(ApplicationMaster.scala:232)
at scala.Option.foreach(Option.scala:257) at
org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$7.apply(ApplicationMaster.scala:232)
at
org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$7.apply(ApplicationMaster.scala:197)
at
org.apache.spark.deploy.yarn.ApplicationMaster$$anon$5.run(ApplicationMaster.scala:800)
at java.security.AccessController.doPrivileged(Native Method) at
javax.security.auth.Subject.doAs(Subject.java:422) at
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1692)
at
org.apache.spark.deploy.yarn.ApplicationMaster.doAsUser(ApplicationMaster.scala:799)
at
org.apache.spark.deploy.yarn.ApplicationMaster.(ApplicationMaster.scala:197)
at
org.apache.spark.deploy.yarn.ApplicationMaster$.main(ApplicationMaster.scala:823)
at
org.apache.spark.deploy.yarn.ExecutorLauncher$.main(ApplicationMaster.scala:854)
at
org.apache.spark.deploy.yarn.ExecutorLauncher.main(ApplicationMaster.scala)
Caused by: java.io.IOException at
org.apache.hadoop.ipc.Client$Connection.waitForWork(Client.java:935)
at org.apache.hadoop.ipc.Client$Connection.run(Client.java:967)
Caused by: java.lang.InterruptedException ... 2 more
LogType:stdout Log Upload Time:28-Aug-2019 00:46:31 LogLength:975 Log
Contents: 2019-08-28 00:46:26 INFO SignalUtils:54 - Registered signal
handler for TERM 2019-08-28 00:46:26 INFO SignalUtils:54 - Registered
signal handler for HUP 2019-08-28 00:46:26 INFO SignalUtils:54 -
Registered signal handler for INT 2019-08-28 00:46:27 INFO
SecurityManager:54 - Changing view acls to: yarn,rhel 2019-08-28
00:46:27 INFO SecurityManager:54 - Changing modify acls to: yarn,rhel
2019-08-28 00:46:27 INFO SecurityManager:54 - Changing view acls
groups to: 2019-08-28 00:46:27 INFO SecurityManager:54 - Changing
modify acls groups to: 2019-08-28 00:46:27 INFO SecurityManager:54 -
SecurityManager: authentication disabled; ui acls disabled; users
with view permissions: Set(yarn, rhel); groups with view permissions:
Set(); users with modify permissions: Set(yarn, rhel); groups with
modify permissions: Set() 2019-08-28 00:46:28 INFO
ApplicationMaster:54 - Preparing Local resources 2019-08-28 00:46:28
ERROR ApplicationMaster:43 - RECEIVED SIGNAL TERM
Any suggestion to resolve this issue?
I'm running a job on a test Spark standalone in cluster mode, but I'm finding myself unable to monitor the status of the driver.
Here is a minimal example using spark-2.4.3 (master and one worker running on the same node, started running sbin/start-all.sh on a freshly unarchived installation using the default conf, no conf/slaves set), executing spark-submit from the node itself:
$ spark-submit --master spark://ip-172-31-15-245:7077 --deploy-mode cluster \
--class org.apache.spark.examples.SparkPi \
/home/ubuntu/spark/examples/jars/spark-examples_2.11-2.4.3.jar 100
log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.NativeCodeLoader).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
19/06/27 09:08:28 INFO SecurityManager: Changing view acls to: ubuntu
19/06/27 09:08:28 INFO SecurityManager: Changing modify acls to: ubuntu
19/06/27 09:08:28 INFO SecurityManager: Changing view acls groups to:
19/06/27 09:08:28 INFO SecurityManager: Changing modify acls groups to:
19/06/27 09:08:28 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(ubuntu); groups with view permissions: Set(); users with modify permissions: Set(ubuntu); groups with modify permissions: Set()
19/06/27 09:08:28 INFO Utils: Successfully started service 'driverClient' on port 36067.
19/06/27 09:08:28 INFO TransportClientFactory: Successfully created connection to ip-172-31-15-245/172.31.15.245:7077 after 29 ms (0 ms spent in bootstraps)
19/06/27 09:08:28 INFO ClientEndpoint: Driver successfully submitted as driver-20190627090828-0008
19/06/27 09:08:28 INFO ClientEndpoint: ... waiting before polling master for driver state
19/06/27 09:08:33 INFO ClientEndpoint: ... polling master for driver state
19/06/27 09:08:33 INFO ClientEndpoint: State of driver-20190627090828-0008 is RUNNING
19/06/27 09:08:33 INFO ClientEndpoint: Driver running on 172.31.15.245:41057 (worker-20190627083412-172.31.15.245-41057)
19/06/27 09:08:33 INFO ShutdownHookManager: Shutdown hook called
19/06/27 09:08:33 INFO ShutdownHookManager: Deleting directory /tmp/spark-34082661-f0de-4c56-92b7-648ea24fa59c
> spark-submit --master spark://ip-172-31-15-245:7077 --status driver-20190627090828-0008
19/06/27 09:09:27 WARN RestSubmissionClient: Unable to connect to server spark://ip-172-31-15-245:7077.
Exception in thread "main" org.apache.spark.deploy.rest.SubmitRestConnectionException: Unable to connect to server
at org.apache.spark.deploy.rest.RestSubmissionClient$$anonfun$requestSubmissionStatus$3.apply(RestSubmissionClient.scala:165)
at org.apache.spark.deploy.rest.RestSubmissionClient$$anonfun$requestSubmissionStatus$3.apply(RestSubmissionClient.scala:148)
at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)
at org.apache.spark.deploy.rest.RestSubmissionClient.requestSubmissionStatus(RestSubmissionClient.scala:148)
at org.apache.spark.deploy.SparkSubmit.requestStatus(SparkSubmit.scala:111)
at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:88)
at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:924)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:933)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: org.apache.spark.deploy.rest.SubmitRestConnectionException: No response from server
at org.apache.spark.deploy.rest.RestSubmissionClient.readResponse(RestSubmissionClient.scala:285)
at org.apache.spark.deploy.rest.RestSubmissionClient.org$apache$spark$deploy$rest$RestSubmissionClient$$get(RestSubmissionClient.scala:195)
at org.apache.spark.deploy.rest.RestSubmissionClient$$anonfun$requestSubmissionStatus$3.apply(RestSubmissionClient.scala:152)
... 11 more
Caused by: java.util.concurrent.TimeoutException: Futures timed out after [10 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:223)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:227)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:190)
at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
at scala.concurrent.Await$.result(package.scala:190)
at org.apache.spark.deploy.rest.RestSubmissionClient.readResponse(RestSubmissionClient.scala:278)
... 13 more
Spark is in good health (I'm able to run other jobs after the one above), the driver-20190627090828-0008 appears as "FINISHED" in the web UI.
Is there something I am missing?
UPDATE:
on the master log all I get is
19/07/01 09:40:24 INFO master.Master: 172.31.15.245:42308 got disassociated, removing it.
i am trying to deploy Spark 2.0 Streaming over Amazon EMR 5.0.
it seems that the application is getting stuck at endless loop with the log
"endless loop of "INFO Client: Application report for application_14111979683_1111 (state: ACCEPTED)"
and then exit.
Here is how i am trying to submit it through the command line:
aws emr add-steps --cluster-id --steps
Type=Spark,Name="Spark
Program",ActionOnFailure=CONTINUE,Args=[--deploy-mode,cluster,--class,,s3://.jar]
any idea ?
thanks,
Eran
16/08/30 15:43:27 INFO SecurityManager: Changing view acls to: hadoop
16/08/30 15:43:27 INFO SecurityManager: Changing modify acls to: hadoop
16/08/30 15:43:27 INFO SecurityManager: Changing view acls groups to:
16/08/30 15:43:27 INFO SecurityManager: Changing modify acls groups to:
16/08/30 15:43:27 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hadoop); groups with view permissions: Set(); users with modify permissions: Set(hadoop); groups with modify permissions: Set()
16/08/30 15:43:27 INFO Client: Submitting application application_14111979683_1111 to ResourceManager
16/08/30 15:43:27 INFO YarnClientImpl: Submitted application application_14111979683_1111
16/08/30 15:43:28 INFO Client: Application report for application_14111979683_1111 (state: ACCEPTED)
16/08/30 15:43:28 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: default
start time: 1472571807467
final status: UNDEFINED
tracking URL: http://xxxxxx:20888/proxy/application_14111979683_1111/
user: hadoop
16/08/30 15:43:29 INFO Client: Application report for application_14111979683_1111 (state: ACCEPTED)
and this the exception thrown:
16/08/31 08:14:48 INFO Client:
client token: N/A
diagnostics: Application application_1472630652740_0001 failed 2 times due to AM Container for appattempt_1472630652740_0001_000002 exited with exitCode: 13
For more detailed output, check application tracking page:http://ip-10-0-0-8.eu-west-1.compute.internal:8088/cluster/app/application_1472630652740_0001Then, click on links to logs of each attempt.
Diagnostics: Exception from container-launch.
Container id: container_1472630652740_0001_02_000001
Exit code: 13
Stack trace: ExitCodeException exitCode=13:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:545)
at org.apache.hadoop.util.Shell.run(Shell.java:456)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:722)
at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:212)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
EMR is actually a wrapper to Yarn.
so, we need to add "--master yarn" as an argument to the deployment command line.
Example:
aws emr add-steps --cluster-id j-XXXXXXXXX --steps Type=Spark,Name="Spark Program",ActionOnFailure=CONTINUE,Args=[--deploy-mode,cluster,--master,yarn,--class,com.xxx.MyMainClass,s3://]
Another thing which is needed, is removing 'sparkConf.setMaster("local[*]")',
from the initialization of spark conf.
I have a cluster of 1 master and 2 slaves. I'm running a spark streaming in master and I want to utilize all nodes in my cluster. i had specified some parameters like driver memory and executor memory in my code. when i give --deploy-mode cluster --master yarn-cluster in my spark-submit, it gives the following error.
> log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
15/08/12 13:24:49 INFO Client: Requesting a new application from cluster with 3 NodeManagers
15/08/12 13:24:49 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (8192 MB per container)
15/08/12 13:24:49 INFO Client: Will allocate AM container, with 896 MB memory including 384 MB overhead
15/08/12 13:24:49 INFO Client: Setting up container launch context for our AM
15/08/12 13:24:49 INFO Client: Preparing resources for our AM container
15/08/12 13:24:49 INFO Client: Source and destination file systems are the same. Not copying file:/home/hdfs/spark-1.4.1/assembly/target/scala-2.10/spark-assembly-1.4.1-hadoop2.5.0-cdh5.3.5.jar
15/08/12 13:24:49 INFO Client: Source and destination file systems are the same. Not copying file:/home/hdfs/spark-1.4.1/external/kafka-assembly/target/spark-streaming-kafka-assembly_2.10-1.4.1.jar
15/08/12 13:24:49 INFO Client: Source and destination file systems are the same. Not copying file:/home/hdfs/spark-1.4.1/python/lib/pyspark.zip
15/08/12 13:24:49 INFO Client: Source and destination file systems are the same. Not copying file:/home/hdfs/spark-1.4.1/python/lib/py4j-0.8.2.1-src.zip
15/08/12 13:24:49 INFO Client: Source and destination file systems are the same. Not copying file:/home/hdfs/spark-1.4.1/examples/src/main/python/streaming/kyt.py
15/08/12 13:24:49 INFO Client: Setting up the launch environment for our AM container
15/08/12 13:24:49 INFO SecurityManager: Changing view acls to: hdfs
15/08/12 13:24:49 INFO SecurityManager: Changing modify acls to: hdfs
15/08/12 13:24:49 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hdfs); users with modify permissions: Set(hdfs)
15/08/12 13:24:49 INFO Client: Submitting application 3808 to ResourceManager
15/08/12 13:24:49 INFO YarnClientImpl: Submitted application application_1437639737006_3808
15/08/12 13:24:50 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:24:50 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: root.hdfs
start time: 1439385889600
final status: UNDEFINED
tracking URL: http://hostname:port/proxy/application_1437639737006_3808/
user: hdfs
15/08/12 13:24:51 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:24:52 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:24:53 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:24:54 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:24:55 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:24:56 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:24:57 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:24:58 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:24:59 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:25:00 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:25:01 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:25:02 INFO Client: Application report for application_1437639737006_3808 (state: ACCEPTED)
15/08/12 13:25:03 INFO Client: Application report for application_1437639737006_3808 (state: FAILED)
15/08/12 13:25:03 INFO Client:
client token: N/A
diagnostics: Application application_1437639737006_3808 failed 2 times due to AM Container for appattempt_1437639737006_3808_000002 exited with exitCode: -1000 due to: File file:/home/hdfs/spark-1.4.1/python/lib/pyspark.zip does not exist
.Failing this attempt.. Failing the application.
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: root.hdfs
start time: 1439385889600
final status: FAILED
tracking URL: http://hostname:port/cluster/app/application_1437639737006_3808
user: hdfs
Exception in thread "main" org.apache.spark.SparkException: Application application_1437639737006_3808 finished with failed status
at org.apache.spark.deploy.yarn.Client.run(Client.scala:855)
at org.apache.spark.deploy.yarn.Client$.main(Client.scala:881)
at org.apache.spark.deploy.yarn.Client.main(Client.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:665)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:170)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:193)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:112)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
How to fix this issue ? Please help me if i'm doing wrong.
The file:/home/hdfs/spark-1.4.1/python/lib/pyspark.zip you submit does not exist.
While running with the Yarn Cluster mode, you always need to specify the other Memory settings for your executors and there individually memory, Plus you always need to specify the driver details also. Now for Example
Amazon EC2 Environment (Reserved already):
m3.xlarge | CORES : 4(1) | RAM : 15 (3.5) | HDD : 80 GB | Nodes : 3 Nodes
spark-submit --class <YourClassFollowedByPackage> --master yarn-cluster --num-executors 2 --driver-memory 8g --executor-memory 8g --executor-cores 1 <Your Jar with Full Path> <Jar Args>
Always remember to add the other third-party libraries or jars to your Classpath in each of the Task Nodes, You can add them directly to your Spark or Hadoop Classpath on each of your Node.
Notes :
1) If you're using the Amazon EMR then It can be achieved using Custom Bootstrap Actions and S3.
2) Remove the conflicting jars too. Sometimes you'll see an unnecessary NullPointerException and this could be one of the key reason for it.
If possible add your stacktrace using
yarn logs -applicationId <HadoopAppId>
So that I can answer you in more specific way.
I recently ran into the same issue. Here was my scenario:
Cloudera Managed CDH 5.3.3 cluster with 7 nodes. I was submitting the job from one of the nodes and it used to fail in both yarn-cluster and yarn-master modes with the same issue.
If you look at the stacktrace, you'll find this line-
15/08/12 13:24:49 INFO Client: Source and destination file systems are the same. Not copying file:/home/hdfs/spark-1.4.1/external/kafka-assembly/target/spark-streaming-kafka-assembly_2.10-1.4.1.jar
15/08/12 13:24:49 INFO Client: Source and destination file systems are the same. Not copying file:/home/hdfs/spark-1.4.1/python/lib/pyspark.zip
15/08/12 13:24:49 INFO Client: Source and destination file systems are the same. Not copying file:/home/hdfs/spark-1.4.1/python/lib/py4j-0.8.2.1-src.zip
15/08/12 13:24:49 INFO Client: Source and destination file systems are the same. Not copying file:/home/hdfs/spark-1.4.1/examples/src/main/python/streaming/kyt.py
This is the reason why the job fails because resources are not copied.
In my case, it was resolved by correcting the HADOOP_CONF_DIR path. It wasn't pointing to the exact folder that contains the core-site.xml and yarn-site.xml and other configuration files. Once this was fixed, the resources were copied during the initiation of the ApplicationMaster and the job ran correctly.
I was able to solve this by providing the driver memory and executor memory at run time.
spark-submit --driver-memory 1g --executor-memory 1g --class com.package.App --master yarn --deploy-mode cluster /home/spark.jar
Using the yarn-client to run spark program.
I've build the spark on yarn environment.
the scripts is
./bin/spark-submit --class WordCountTest \
--master yarn-client \
--num-executors 1 \
--executor-cores 1 \
--queue root.hadoop \
/root/Desktop/test2.jar \
10
when running I get the following exception.
15/05/12 17:42:01 INFO spark.SparkContext: Running Spark version 1.3.1
15/05/12 17:42:01 WARN spark.SparkConf:
SPARK_CLASSPATH was detected (set to ':/usr/local/hadoop/hadoop-2.5.2/share/hadoop/common/hadoop-lzo-0.4.20-SNAPSHOT.jar').
This is deprecated in Spark 1.0+.
Please instead use:
- ./spark-submit with --driver-class-path to augment the driver classpath
- spark.executor.extraClassPath to augment the executor classpath
15/05/12 17:42:01 WARN spark.SparkConf: Setting 'spark.executor.extraClassPath' to ':/usr/local/hadoop/hadoop-2.5.2/share/hadoop/common/hadoop-lzo-0.4.20-SNAPSHOT.jar' as a work-around.
15/05/12 17:42:01 WARN spark.SparkConf: Setting 'spark.driver.extraClassPath' to ':/usr/local/hadoop/hadoop-2.5.2/share/hadoop/common/hadoop-lzo-0.4.20-SNAPSHOT.jar' as a work-around.
15/05/12 17:42:01 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/05/12 17:42:02 INFO spark.SecurityManager: Changing view acls to: root
15/05/12 17:42:02 INFO spark.SecurityManager: Changing modify acls to: root
15/05/12 17:42:02 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
15/05/12 17:42:02 INFO slf4j.Slf4jLogger: Slf4jLogger started
15/05/12 17:42:02 INFO Remoting: Starting remoting
15/05/12 17:42:03 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver#master:49338]
15/05/12 17:42:03 INFO util.Utils: Successfully started service 'sparkDriver' on port 49338.
15/05/12 17:42:03 INFO spark.SparkEnv: Registering MapOutputTracker
15/05/12 17:42:03 INFO spark.SparkEnv: Registering BlockManagerMaster
15/05/12 17:42:03 INFO storage.DiskBlockManager: Created local directory at /tmp/spark-57f5fb29-784d-4730-92b8-c2e8be97c038/blockmgr-752988bc-b2d0-42f7-891d-5d3edbb4526d
15/05/12 17:42:03 INFO storage.MemoryStore: MemoryStore started with capacity 267.3 MB
15/05/12 17:42:04 INFO spark.HttpFileServer: HTTP File server directory is /tmp/spark-2f2a46eb-9259-4c6e-b9af-7159efb0b3e9/httpd-3c50fe1e-430e-4077-9cd0-58246e182d98
15/05/12 17:42:04 INFO spark.HttpServer: Starting HTTP Server
15/05/12 17:42:04 INFO server.Server: jetty-8.y.z-SNAPSHOT
15/05/12 17:42:04 INFO server.AbstractConnector: Started SocketConnector#0.0.0.0:41749
15/05/12 17:42:04 INFO util.Utils: Successfully started service 'HTTP file server' on port 41749.
15/05/12 17:42:04 INFO spark.SparkEnv: Registering OutputCommitCoordinator
15/05/12 17:42:05 INFO server.Server: jetty-8.y.z-SNAPSHOT
15/05/12 17:42:05 INFO server.AbstractConnector: Started SelectChannelConnector#0.0.0.0:4040
15/05/12 17:42:05 INFO util.Utils: Successfully started service 'SparkUI' on port 4040.
15/05/12 17:42:05 INFO ui.SparkUI: Started SparkUI at http://master:4040
15/05/12 17:42:05 INFO spark.SparkContext: Added JAR file:/root/Desktop/test2.jar at http://192.168.147.201:41749/jars/test2.jar with timestamp 1431423725289
15/05/12 17:42:05 WARN cluster.YarnClientSchedulerBackend: NOTE: SPARK_WORKER_MEMORY is deprecated. Use SPARK_EXECUTOR_MEMORY or --executor-memory through spark-submit instead.
15/05/12 17:42:06 INFO client.RMProxy: Connecting to ResourceManager at master/192.168.147.201:8032
15/05/12 17:42:06 INFO yarn.Client: Requesting a new application from cluster with 2 NodeManagers
15/05/12 17:42:06 INFO yarn.Client: Verifying our application has not requested more than the maximum memory capability of the cluster (8192 MB per container)
15/05/12 17:42:06 INFO yarn.Client: Will allocate AM container, with 896 MB memory including 384 MB overhead
15/05/12 17:42:06 INFO yarn.Client: Setting up container launch context for our AM
15/05/12 17:42:06 INFO yarn.Client: Preparing resources for our AM container
15/05/12 17:42:07 WARN yarn.Client: SPARK_JAR detected in the system environment. This variable has been deprecated in favor of the spark.yarn.jar configuration variable.
15/05/12 17:42:07 INFO yarn.Client: Uploading resource file:/usr/local/spark/spark-1.3.1-bin-hadoop2.5.0-cdh5.3.2/lib/spark-assembly-1.3.1-hadoop2.5.0-cdh5.3.2.jar -> hdfs://master:9000/user/root/.sparkStaging/application_1431423592173_0003/spark-assembly-1.3.1-hadoop2.5.0-cdh5.3.2.jar
15/05/12 17:42:11 INFO yarn.Client: Setting up the launch environment for our AM container
15/05/12 17:42:11 WARN yarn.Client: SPARK_JAR detected in the system environment. This variable has been deprecated in favor of the spark.yarn.jar configuration variable.
15/05/12 17:42:11 INFO spark.SecurityManager: Changing view acls to: root
15/05/12 17:42:11 INFO spark.SecurityManager: Changing modify acls to: root
15/05/12 17:42:11 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
15/05/12 17:42:11 INFO yarn.Client: Submitting application 3 to ResourceManager
15/05/12 17:42:11 INFO impl.YarnClientImpl: Submitted application application_1431423592173_0003
15/05/12 17:42:12 INFO yarn.Client: Application report for application_1431423592173_0003 (state: FAILED)
15/05/12 17:42:12 INFO yarn.Client:
client token: N/A
diagnostics: Application application_1431423592173_0003 submitted by user root to unknown queue: root.hadoop
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: root.hadoop
start time: 1431423731271
final status: FAILED
tracking URL: N/A
user: root
Exception in thread "main" org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:113)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:59)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:141)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:381)
at WordCountTest$.main(WordCountTest.scala:14)
at WordCountTest.main(WordCountTest.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:110)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
My code very simple, just as following:
object WordCountTest {
def main (args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
val sparkConf = new SparkConf().setAppName("WordCountTest Prog")
val sc = new SparkContext(sparkConf)
val sqlContext = new SQLContext(sc)
val file = sc.textFile("/data/test/pom.xml")
val counts = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _)
println(counts)
counts.saveAsTextFile("/data/test/pom_count.txt")
}
}
I've debug this problem for 2 days. Help!Help! Thx.
Try changing queue name to hadoop
in my case,
change “--queue thequeue” to “--queue default”
it work
运行:
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 4g --executor-memory 2g --executor-cores 1 --queue thequeue lib/spark-examples*.jar 10
时报如下错误,只需要将“--queue thequeue”改成“--queue default”即可。